Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2017, volume 18, issue 3, pages 222-229.
Section: Nuclear Physics.
Received: 01.06.2017; Accepted: 12.10.2017; Published online: 28.12.2017.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2017.03.222

Evaluation of the two lightest quark masses

V. A. Babenko*, N. M. Petrov

Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: pet@bitp.kiev.ua; pet2@ukr.net

Abstract: Simple relations between the masses of the two lightest up and down quarks were obtained on the basis of the simple physically based model compatible with the present-day theory of strong interactions, i.e. with quantum chromodynamics. Relations between the u and d quark masses, on one hand, and nucleon and pion masses, on the other hand, are also established. Thus, the obtained in such a way elementary formula mu/md = 1/(1+√2), relating u and d quark masses, appears to be in excellent agreement with a number of theoretical calculations of the ratio mu/md of the lightest quark masses. The u and d quark masses mu = 1.903 MeV, md = 4.594 MeV, calculated with the help of the obtained relations, are also in very good agreement with the modern evaluations and calculations of these quantities. The average of the u and d quark masses m̅ud = ΔMπ/√2 ≅ 3.248 MeV, obtained in the proposed approach, is in good agreement with previous calculations too.

Keywords: quantum chromodynamics, Standard Model of Particle Physics, quark, quark masses, hadron, nucleon, pion.

References:

1. M. Gell-Mann. A Schematic Model of Baryons and Mesons. Phys. Lett. 8(3) (1964) 214. https://doi.org/10.1016/S0031-9163(64)92001-3

2. G. Zweig. An SU3 Model for Strong Interaction Symmetry and its Breaking. CERN Report 8182/TH.401, 1964. 20 p. https://cds.cern.ch/record/570209?ln=en

3. J.J.J. Kokkedee. The Quark Model (New York: W.A. Benjamin, 1969) 239 p. Google Books

4. F.J. Yndurain. Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons (New York-Berlin-Heidelberg-Tokyo: Springer-Verlag, 1983) 228 p. https://doi.org/10.1007/978-3-662-09633-8

5. L.B. Okun. Elementary Particle Physics (Moskva: Nauka, 1988) 272 p. (Rus) Google Books

6. V.V. Anisovich et al. Quark Model and High Energy Collisions (London-Singapore: World Scientific, 2004) 530 p. Google Books

7. C. Patrignani et al. (Particle Data Group). Review of Particle Physics. Chin. Phys. C 40(10) (2016) 100001. https://doi.org/10.1088/1674-1137/40/10/100001

8. D.J. Gross, S.B. Treiman, F. Wilczek. Light-Quark Masses and Isospin Violation. Phys. Rev. D 19(7) (1979) 2188. https://doi.org/10.1103/PhysRevD.19.2188

9. S. Durr et al. Lattice QCD at the Physical Point: Light Quark Masses. Phys. Lett. B 701(2) (2011) 265. https://doi.org/10.1016/j.physletb.2011.05.053

10. V.G. Bornyakov et al. Color Confinement and Hadron Structure in Lattice Chromodynamics. Physics-Uspekhi 47(1) (2004) 17. https://doi.org/10.1070/PU2004v047n01ABEH001605

11. S. Durr et al. Ab Initio Determination of Light Hadron Masses. Science 322(5905) (2008) 1224. https://doi.org/10.1126/science.1163233

12. C. Gattringer, C.B. Lang. Quantum Chromodynamics on the Lattice (Berlin-Heidelberg: Springer-Verlag, 2010) 343 p. https://doi.org/10.1007/978-3-642-01850-3

13. V.G. Bornyakov, M.I. Polikarpov. Computing Methods in Lattice Quantum Chromodynamics. Theoretical Physics 11 (2010) 64. (Rus) http://theorphys.samsu.ru/pdf/11/[7]%20Bornyakov.pdf

14. A. Bazavov et al. Nonperturbative QCD Simulations with 2 + 1 Flavors of Improved Staggered Quarks. Rev. Mod. Phys. 82(2) (2010) 1349. https://doi.org/10.1103/RevModPhys.82.1349

15. E.M. Henley, L.K. Morrison. n-n and n-p Scattering Lengths and Charge Independence. Phys. Rev. 141(4) (1966) 1489. https://doi.org/10.1103/PhysRev.141.1489

16. T.E.O. Ericson, G.A. Miller. Charge Dependence of Nuclear Forces. Phys. Lett. B 132(1-3) (1983) 32. https://doi.org/10.1016/0370-2693(83)90216-2

17. R. Machleidt, M.K. Banerjee. Charge Dependence of the πNN Coupling Constant and Charge Dependence of the Nucleon-Nucleon Interaction. Few-Body Syst. 28(3) (2000) 139. https://doi.org/10.1007/s006010070019

18. V.A. Babenko, N.M. Petrov. Isospin Breaking in the Pion-Nucleon Coupling Constant and the Nucleon-Nucleon Scattering Length. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 17(2) (2016) 143. (Rus) https://jnpae.kinr.kyiv.ua/17.2/Articles_PDF/jnpae-2016-17-0143-Babenko.pdf

19. V.A. Babenko, N.M. Petrov. Relation between the Charged and Neutral Pion-Nucleon Coupling Constants in the Yukawa Model. Physics of Particles and Nuclei Letters. 14(1) (2017) 58. https://doi.org/10.1134/S1547477117010083

20. V.A. Babenko, N.M. Petrov. On the Impact of Mass Difference between the Pions (π±0) and the Nucleons (n-p) on the Charge Independence Breaking of Nuclear Forces. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 18(1) (2017) 13. (Rus) https://jnpae.kinr.kyiv.ua/18.1/Articles_PDF/jnpae-2017-18-0013-Babenko.pdf

21. B.L. Ioffe. QCD (Quantum Chromodynamics) at Low Energies. Prog. Part. Nucl. Phys. 56(1) (2006) 232. https://doi.org/10.1016/j.ppnp.2005.05.001

22. D.R. Nelson, G.T. Fleming, G.W. Kilcup. Up Quark Mass in Lattice QCD with Three Light Dynamical Quarks and Implications for Strong CP Invariance. Phys. Rev. Lett. 90(2) (2003) 021601. https://doi.org/10.1103/PhysRevLett.90.021601

23. N.F. Nasrallah. Glue Content and Mixing Angle of the η-η' System: the Effect of the Isoscalar 0- Continuum. Phys. Rev. D 70(11) (2004) 116001. https://doi.org/10.1103/PhysRevD.70.116001

24. C. Aubin et al. Light Pseudoscalar Decay Constants, Quark Masses, and Low Energy Constants from Three-Flavor Lattice QCD. Phys. Rev. D 70(11) (2004) 114501. https://doi.org/10.1103/PhysRevD.70.114501

25. D.-N. Gao, B.A. Li, M.-L. Yan. Electromagnetic Mass Splittings of π, a1, K, K1(1400), and K(892). Phys. Rev. D 56(7) (1997) 4115. https://doi.org/10.1103/PhysRevD.56.4115

26. J. Bijnens, J. Prades, E. de Rafael. Light Quark Masses in QCD. Phys. Lett. B 348(1-2) (1995) 226. https://doi.org/10.1016/0370-2693(95)00105-T

27. S. Basak et al. Electromagnetic Effects on the Light Hadron Spectrum. J. Phys.: Conf. Ser. 640 (2015) 012052. https://doi.org/10.1088/1742-6596/640/1/012052

28. J. Amoros, J. Bijnens, P. Talavera. QCD Isospin Breaking in Meson Masses, Decay Constants and Quark Mass Ratios. Nucl. Phys. B 602(1-2) (2001) 87. https://doi.org/10.1016/S0550-3213(01)00121-3

29. N. Carrasko et al. Up, Down, Strange and Charm Quark Masses with Nf = 2 + 1 + 1 Twisted Mass Lattice QCD. Nucl. Phys. B 887 (2014) 19. https://doi.org/10.1016/j.nuclphysb.2014.07.025

30. T. Blum et al. Electromagnetic Mass Splittings of the Low Lying Hadrons and Quark Masses from 2 + 1 Flavor Lattice QCD + QED. Phys. Rev. D 82(9) (2010) 094508. https://doi.org/10.1103/PhysRevD.82.094508

31. J. Gasser, H. Leutwyler. Quark Masses. Phys. Rep. 87(3) (1982) 77. https://doi.org/10.1016/0370-1573(82)90035-7

32. A. Duncan, E. Eichten, H. Thacker. Electromagnetic Splittings and Light Quark Masses in Lattice QCD. Phys. Rev. Lett. 76(21) (1996) 3894. https://doi.org/10.1103/PhysRevLett.76.3894

33. H. Leutwyler. The Ratios of the Light Quark Masses. Phys. Lett. B 378(1-4) (1996) 313. https://doi.org/10.1016/0370-2693(96)00495-9

34. T. Blum et al. Determination of Light Quark Masses from the Electromagnetic Splitting of Pseudoscalar Meson Masses Computed with Two Flavors of Domain Wall Fermions. Phys. Rev. D 76(11) (2007) 114508. https://doi.org/10.1103/PhysRevD.76.114508

35. C.A. Dominguez. Determination of Light Quark Masses in QCD. Int. J. Mod. Phys. A 25(29) (2010) 5223. https://doi.org/10.1142/S0217751X10051116

36. S. Aoki et al. 1 + 1 + 1 Flavor QCD + QED Simulation at the Physical Points. Phys. Rev. D 86(3) (2012) 034507. https://doi.org/10.1103/PhysRevD.86.034507

37. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov. QCD and Resonance Physics: the ρ-ω Mixing. Nucl. Phys. B 147(5) (1979) 519. https://doi.org/10.1016/0550-3213(79)90024-5

38. S. Durr et al. Lattice QCD at the Physical Point: Simulation and Analysis Details. J. High Energy Phys. 08 (2011) 148. https://doi.org/10.1007/JHEP08(2011)148

39. G.V. Efimov et al. About Isotopic Invariance Violation. Preprint JINR Ð2-83-420 (Dubna, 1983) 16 p. (Rus)