![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Semiclassical shell-structure moments of inertia in heated Fermi systems
A. G. Magner1, A. S. Sitdikov2, A. A. Khamzin2, J. Bartel3, A. M. Gzhebinsky1
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Kazan State Power-Engineering University, Kazan, Russia
3Institut Pluridisciplinaire Hubert Curien, Universit'e Louis Pasteur, Strasbourg, France
Abstract: The moment of inertia for collective rotation is derived analytically for the harmonic-oscillator Hamiltonian within the cranking model for any rotation frequency and at finite temperature. Semiclassical shell-structure moments of the inertia are obtained in terms of the free-energy shell corrections through the rigid-body inertia of the statistically equilibrium rotation of a heated Fermi system by using the periodic-orbit theory. Their analytical structure in terms of the equatorial and 3-dimensional periodic orbits for the axially-symmetric harmonic-oscillator potential is in perfect agreement with quantum results for critical deformations and temperatures.
Keywords: cranking model, nuclear rotations, moment of inertia, periodic orbit theory, shell-correction energy, harmonic oscillator potential.
References:1. Inglis D. R. Particle Derivation of Nuclear Rotation Properties Associated with a Surface Wave. Phys. Rev. 96 (1954) 1059; https://doi.org/10.1103/PhysRev.96.1059
Dynamics of Nuclear Deformation. Phys. Rev. 97 (1955) 701; https://doi.org/10.1103/PhysRev.97.701
Nuclear Moments of Inertia due to Nucleon Motion in a Rotating Well. Phys. Rev. 103 (1956) 1786. https://doi.org/10.1103/PhysRev.103.1786
2. Bohr A., Mottelson B. R. Mat. Fys. Medd. Dan. Vid. Selsk. 30 (1955).
3. Bohr A., Mottelson B. R. Nuclear Structure. Vol. II (New York: Benjamin, 1975).
4. Pashkevich V. V., Frauendorf S. Effect of the shell structure on the moment of inertia; Behavior of the averaged moment of inertia. Sov. J. Nucl. Phys. 20 (1975) 588.
5. Zelevinsky V. G. A simple model of a rapidly rotating nucleus. Sov. J. Nucl. Phys. 22 (1975) 1085.
6. Mikhailov I. N., Neergard K., Pashkevich V. V., Frauendorf S. Effect of rotation on the collective properties of atomic nuclei. Sov. J. Part. Nucl. 8 (1977) 550.
7. Afanasjev A. V., Fossan D. B., Lane G. J., Ragnarsson I. Termination of rotation band: Disappearance of quantum many-body collectivity. Phys. Rep. 322 (1999) 1. https://doi.org/10.1016/S0370-1573(99)00035-6
8. Brack M., Bhaduri R. K. Frontiers in Physics: Semiclassical Physics (Boulder: Westview Press, 2003) 458 p.
9. Bencheikh K., Quentin P., Bartel J. Rotations in nuclei - a semiclassical description. Nucl. Phys. A 571 (1994) 518. https://doi.org/10.1016/0375-9474(94)90223-2
10. E. Chabanat, J. Meyer, K. Bencheikh, P. Quentin, J. Bartel. Equilibrium deformations of rotating nuclei in a self-consistent semiclassical approach. Phys. Lett. B 325 (1994) 13. https://doi.org/10.1016/0370-2693(94)90064-7
11. Strutinsky V. M. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95 (1967) 420; https://doi.org/10.1016/0375-9474(67)90510-6
"Shells" in deformed nuclei. Nucl. Phys. A 122 (1968) 1. https://doi.org/10.1016/0375-9474(68)90699-4
12. M. Brack, L. Damgard, A. S. Jensen., H. C. Pauli, V. M. Strutinsky, C. Y. Wong. Funny Hills: The Shell-Correction Approach to Nuclear Shell Effects and Its Applications to the Fission Process. Rev. Mod. Phys. 44 (1972) 320. https://doi.org/10.1103/RevModPhys.44.320
13. Kolomietz V. M., Magner A. G., Strutinsky V. M. Shell effects in nuclei at large angular momenta. Sov. J. Nucl. Phys. 29 (1979) 758.
14. Gutzwiller M. Chaos in Classical and Quantum Mechanics (New York: Springer-Verlag, 1990) 432 p. https://doi.org/10.1007/978-1-4612-0983-6
15. Strutinsky V. M. Semi-classical theory of nuclear shell structure. Nucleonika 20 (1975) 679;
Strutinsky V. M., Magner A. G. Semi-classical theory of nuclear shell structure. Sov. Phys. Part. Nucl. 7 (1976) 356.
16. Richter K., Ulmo D., Jalabert R. A. Orbital magnetism in the ballistic regime: geometric effects. Phys. Rep. 276 (1996) 1. https://doi.org/10.1016/0370-1573(96)00010-5
17. Frauendorf S., Kolomietz V. M., Magner A. G., Sanzhur A. I. Supershell structure of magnetic susceptibility. Phys. Rev. B 58 (1998) 5622. https://doi.org/10.1103/PhysRevB.58.5622
18. M. A. Deleplanque, S. Frauendorf, V. V. Pashkevich, S. Y. Chu, A. Unzhakova. Gross shell structure at high spin in heavy nuclei. Phys. Rev. C 69 (2004) 044309. https://doi.org/10.1103/PhysRevC.69.044309
19. Creagh S. C. Trace Formula for Broken Symmetry. Ann. Phys. 248 (1996) 60. https://doi.org/10.1006/aphy.1996.0051
20. Magner A. G., Vydrug-Vlasenko S. M., Hofmann H. Gross-shell effects in nuclear response functions. Nucl. Phys. A 524 (1991) 31. https://doi.org/10.1016/0375-9474(91)90015-X
21. Gzhebinsky A. M., Magner A. G., Sitdikov A. S. Semiclassical inertia for nuclear collective rotation. Nucl. Phys. At. Energy 8 (2007) 17. https://jnpae.kinr.kyiv.ua/19(1)/Articles_PDF/jnpae-2007-1(19)-0017-Gzhebinsky.pdf
22. Hantmaher F. P. Theory of Matrixes. Vol. V (Moscow: Nauka, 1966).
23. Smirnov V. I. Course of the High Mathematics. Vol. III, part 2, sect. IV (Moscow: Nauka, 1974).
24. Magner A. G. Semi-classical analysis of the gross-shell structure in the deformed oscillator potential. Sov. J. Nucl. Phys. 28 (1978) 764.
25. Magner A. G., Gzhebinsky A. M., Fedotkin S. N. Semiclassical inertia of nuclear collective dynamics. Phys. Atom. Nucl. 70 (2007) 647; https://doi.org/10.1134/S1063778807040059
Shell-structure inertia for slow collective motion. Phys. Atom. Nucl. 70 (2007) 1859.
26. Gzhebinsky A. M., Magner A. G., Fedotkin S. N. Low-lying collective excitations of nuclei as a semiclassical response. Phys. Rev. C 76 (2007) 064315. https://doi.org/10.1103/PhysRevC.76.064315