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The moment of inertia for collective rotation is derived analytically for the harmonic-oscillator Hamiltonian within
the cranking model for any rotation frequency and at finite temperature. Semiclassical shell-structure moments of the
inertia are obtained in terms of the free-energy shell corrections through the rigid-body inertia of the statistically
equilibrium rotation of a heated Fermi system by using the periodic-orbit theory. Their analytical structure in terms of
the equatorial and 3-dimensional periodic orbits for the axially-symmetric harmonic-oscillator potential is in perfect

agreement with quantum results for critical deformations and temperatures.
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Introduction

Several theoretical approaches, in particular the
cranking model, were used for the description of
many remarkable properties of collective nuclear
rotations [1-7]. It was shown [4, 6] that the
moments of inertia can be presented as a sum of a
smooth classical rigid-body term with the #
corrections of the Extended Thomas-Fermi approach
(ETF) [8 - 10] and their shell corrections [4]. Such
shell-nanostructure phenomena were successfully
described on the basic of the mean-field approach
within the shell correction method (SCM) [11, 12]
adapted to the rotational problem in [4]. The
independent particle model near the Fermi surface is
used for calculations of the shell corrections to the
free energy and moment of inertia. However, the
total free energy and moment of inertia in the SCM
are beyond this model. In particular, the smooth ETF
parts can be associated with a leptodermic expansion
in which the basic ingradient is the nuclear surface
formed by a nuclear many-body interacton. For the
shell correction calculations, it is worth to apply for
solving this problem the semiclassical periodic orbit
theory (POT) as one of the powerful and fruitful
theoretical tools for the analytical understanding of
the main features of shell structure in finite Fermion
systems [8,13-18]. The semiclassical shell
corrections to the moments of inertia for rotations
around the symmetry axis like alignment of the
individual-particle angular momenta (the so called
“classical rotation”) were derived within the POT at
finite temperatures in terms of periodic orbits in [13]
(see also [16, 17] for similar derivations of the
magnetic susceptibilities). For collective rotations of
deformed nuclei this periodic-orbit structure was
considered semiclassically in Ref. [18] by applying
the classical perturbation theory of Creagh [8, 19] to
the spheroid cavity model.
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In the present work the shell components of the
moments of inertia for the collective rotations within
the nonperturbative POT based on the mean-field
cranking model are derived asymptotically for large
semiclassical parameter kR ~ N'° >1 in terms of

the free-energy shell corrections for nucleus with
large enough particle numbers N, Fermi
momentum k, in 7 units and a spatial size R.
Explicit analytical results are obtained for the
deformed harmonic oscillator potential. One of the
main purposes is to use this simple completely
analytical example as a test in order to find a general
relation of the shell components of the moment of
inertia to those of the rigid body through the free-
energy shell corrections valid for any mean-field
potential well within the cranking model.

Cranking model for nuclear rotations

Within the cranking model, the collective nuclear
rotation of an axially symmetric mean-field potential
around the x axis, perpendicular to the symmetry z
axis, can be described by solving the eigenvalue
problem for the single-particle (s.p.) Hamiltonian
(Routhian) in the framework of a rotating coordinate
system [3, 4, 6],

H,=H-ol, ((,) =d > n’(¢) =1_. (1)

Here, H is the unperturbed Hamiltonian, ¢  the
projection on to the x axis of the angular-
momentum operator, and d_ the spin (spin-isospin)
degeneracy. The Lagrangian multiplier @ is the
rotation frequency of the body-fixed coordinate
system. Its value @w=aw(/ ) can be found from

Eq. (1) for each given value of the constraint angular
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momentum /. The particle number conservation
determines the chemical potential A, through the

occupation numbers n” for a system of independent
nucleons in the s.p. state 7,

N=dXZn,.”,

n'=n(g’)={+exp[ (&’ -2)T . ()

1

with the eigenvalues & of the Routhian /),
A,=A=ée. at w=0, where &, is the Fermi
energy, &, =h’k;/2m, k, the Fermi momentum in
units of 7%, m the nucleon mass, and 7 the
temperature. The moment of inertia ® (@) is

defined similarly to the magnetic or isolated
susceptibilities [16, 17, 21],

o((.), OE(w)
ow B 0w’

0,(v)= ; 3

where E(w)= <H )w + ol is the energy of a Fermi
system. The yrast line E(/ ) can be obtained by|

o _ dh

L=
20 0,

(@, _aﬂ)z (

N},+NZ]+(
a)L—i—a)Z

o, — @,
where Kk =x,y,z, n,=n" at @=0, according to
Eq. (2). Notice that for the HO potential one may
calculate analytically the matrix elements of the
angular momentum projection operator /.
Substituting these and the single-particle energies into
the Inglis formula for the moment of inertia in 2nd
order perturbation theory one also arrives at the
expression, Eq. (5), of the nonperturbative derivation.

For the statistically equilibrium rotation
(selfconsistent relation [3]),
a)xNx = a)yNy = a)zNz 4 (6)

the moment of inertia (5) equals the rigid-body value
given by

@;ig =mjdrp(r) [yz+sz:dxh[xy/ah+NZ/CUZ),
(7))

2
w +o) [N e j
z y >

elimination of the frequency @ from the constraint
of (1) at zero temperature 7 .

For the case of the harmonic oscillator (HO)
Hamiltonian the direct diagonalization (without
using a perturbation expansion) of the Routhian,
Eq. (1), yields for any frequencies @ analytical

expressions for the single-particle energies &’ and
the moments of inertia ® (@) [5]. We extended

these results to finite temperatures 7' through the
oscillator occupation numbers (see Appendix A for a
detailed derivation based on Refs. [22, 23]). In the
small rotation-frequency limit @ — 0 (adiabatic
case) one uses the s.p. spectrum independent of @,

& =ho (N, +1)+ho, (N, +1/2),

NLiszi+N)fi’ 4

where N, N, and N, are the HO quantum
numbers related to the partial HO frequencies @,
o, and @, 0, =0, =0, .

From Eq. (A15) for the moment of inertia ® (w)
one finds [2, 3, 5] in the adiabatic limit @ — 0

Ne=>n (N, +1/2),

i

)

| where p(r) is the particle density. The first term in

(5) is related to the coupling of single-particle levels
through major N shells (AN =2, see Ref. [3]) and
the second term corresponds to transitions between
levels inside a shell (AN =0). In the spherical limit,
this term reduces identically to the diagonal
alignment moment of inertia,

©, >0, >-d > (dn/de)|(i| £, [)[.  (8)

For calculations of the shell corrections, it is
convenient to re-write the moment of inertia ®,,
Eq. (5), in terms of the rigid body inertia @,
Eq. (7), and the free energy F(w=0) of the HO
system at finite temperature 7',

0 = [a)i (2774 +9n° +1)(~D;"g —4n’ (772 + I)F}/{a}i (2772 —1)(772 —1)} ,

where 77 is the deformation parameter, 7=, /.,
under the usual volume conservation condition,
w,w. =@, . Notice that in this way the oscillator
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quantum numbers N and N, could be elliminated

from Egs. (5) and (7) through the explicit expression
of the free energy F for the ideal Fermi gas.
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Calculating explicitly the rigid-body inertia ® (7)
for the HO and determining the shell components
00, and 00, by the SCM [11, 12], these are

obtained in terms of the free energy shell correction
oF,

50, =|(1+7°)1302 | 6F, 50, =(2/30} |5F, (9)

0 =

where n(g) are the Fermi occupation numbers
n(g’) at @=0, Eq. (2),and ¢ (r;) and ¢ (r,) are
respectively the angular-momentum projections onto
the x axis for the particle at the spatial points r, and
r, . With the usual energy spectral representation for
the one-body Green’s function in the mean-field

ZG Zﬂ rl,rz,

The index «a covers all classical isolated paths
inside the potential well which connect the two
spatial points I, and r, for a given s.p. energy &.

Here S,

trajectory «, and 4, denotes a phase related to the
Maslov index through the number of caustic and
turning points along the path o« [8,15]. The
amplitudes 4, of the Green’s function depend on
the classical stability factors and trajectory
degeneracy owing to the geometrical and dynamical
symmetries of the given Hamiltonian (see Refs. [8,
14, 15, 24] for their specific expressions).

Among all classical trajectories & in Eq. (11),

we may single out one ¢, which connects directly

r,r,,&

is the classical action along such a

r, and r, without intermediate turning points. It is
of the sum (11).

Therefore, for the Green’s function G , Eq. (11), one
has then a separation, G=G, +G;. In the nearly

associated with the component G,

local approximation one finds

m I
G ~G,=—| ———— |exps—|r, -, r
a 0 (27rh2|r2—r1 J p{h| 2 1|P( )}

for points that are spatially close 1, >, =1, p(r)
is the particle momentum at r=(r,+r,)/2 (see
Refs. [15, 21, 25, 26]). The second term G, is the

fluctuating part of the Green’s function (11),
G~=G,+G,, determined by other trajectories

o, #a, [15, 20, 24].
obtains from (10)

With this separation one
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, £,(5) 0, (r) Re[ G(r,,1,,) [Im[ G (r,,1y,6) ],

with the obvious spherical limit, 6@ —00©, at
n—o1.

Semiclassical shell-structure approach

For the POT calculations, it turns out to be
helpful to use the coordinate representation through
the Green’s functions G [12],

(10)

approximation, one has the well-known second order
perturbation result of the cranking model [3, 4, 6].
However, we may also include semiclassically the
diagonal terms into (10) as explained below. The
Green’s function in (10) can be approximated by the
semiclassical Gutzwiller trajectory expansion [14]
extended to continuous symmetry [8, 15, 24],

exp hS (rl,rz,g)—%[,ua} (11)
I I
0,=> 0,
v,v'=0
©" =(2d,/x) [de n(e)[ dr [dr, ¢, () ¢ (r)x
xRe| G, (r,.,5,,£) | Im[ G, (r,r,,2)]. (12)

The main smooth term of this moment sum for ®_
is the
associated with averaging of ®

Thomas-Fermi rigid-body component
over the phase-

space variables which removes the non-local
correlations [21]. The 7 corrections of the smooth
ETF approach to this TF approximation were
obtained in Refs. [9, 10].

The shell-structure component 5®”' of ®°' for
the moment of inertia ®_, Eq. (12), can be related
semiclassically to the shell correction dp(r) of the
particle density p(r) through that of the rigid body
moment of inertia. Indeed, substituting the nearly
local approximation G, into Eq. (12) for v=0 and
G, for v'=1, we select the shell component 5@
of @21 just as for the free-energy shell corrections
oF . Using the transformation of the coordinates I,
and r, to the center-of-mass and relative coordinates
r=(r,+r,)/2 -r,
spherical coordinates for s, ds=s’ds sind.dd.do,
one obtains for almost equilibrium rotation

and s=r, as well as the
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50" = —(d“—mjjdf:&n(g)fdrjdss.[dﬂd(px sing, £, (r—s/2) ¢, (r+s/2)x

(zh)’

x cos( p(r)s/h) Im[G1 (r—s/2,r+s/2,5)] ~ 00 = mjdr(y2 +22] sp(r).

For the classical angular-momentum projection in
the integrand of the first expression in Eq. (13) we
approximately wrote

0. (r=s/2)( (r+8/2)= 2 (r)= ()" +2°)p°(r). (14)

Note that this classical angular-momentum
projection /_(r) in the rotating coordinate system is
caused by the global rotation rather than by the
motion of particles along the trajectories « inside
the nucleus. According to the time-reversible
symmetry of the Routhian, the particles are, indeed,
moving in the non-rotating (@=0) coordinate
system along these trajectories in both directions
with opposite signs of ¢ and their contributions to
the total angular momentum of the nucleus turns out
to be zero. We integrated then explicitly over s and
found sine squared in the integrand over & and r
with the mean value 1/2 for the averaging over
energies &. Adding and subtracting identically this
value 1/2 from the sine squared, we first integrate
over spherical angles € and ¢, in the term related
to this 1/2, writing simply 4z because of the
independence of this integrand of angles of the
vector s . Performing then the integrations over & in
this first term and taking smooth quantities in front
of the sharply peaked function dn(e) at the energy
&=/ one obtains the rigid-body shell correction
component 5@, as shown in Eq. (13). The
cranking model for the nuclear rotation implies that
the correlation corrections in (13) should be small
enough with respect to the main rigid-body
component 6O to be neglected. Other

contributions obtained by using the stationary phase
method [20], except for a smooth rigid-body part

coming from O, can also be referred to a
fluctuation correction to the rigid-body moment of

inertia. Finally, for the semiclassical shell
corrections to the moments of inertia for
perpendicular  6©, , and parallel 0O_,

(alignment along the symmetry axis) rotation, we
arrive for the deformed HO with Eq. (9) at the
following expressions

50,,, 60", =|(1+7*) 30} | 5F,,.

x,scl x,scl —

50.,, ~ 50, =(2/30; | 5F,,.

z,scl z,scl

(15)
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(13)

Here, OF,, is the semiclassical periodic-orbit (p.o.)

sum for the free energy shell component [8, 13, 15,
16],

oF,, (T>N) = Z5Up.o Q[Zpﬂj )
po.

Q(Z) = ”—Z Zpﬁ. = tpoT/h >

sinh(72)’ (16)

oU

p.o.

is the p.o. component of the semiclassical
energy shell correction, and ¢,, is the time of

particle motion along the p.o. [8,15]. The
temperature-dependent factor Q(¢,,7/h) in (16)

decreases exponentially with increasing the p.o.
period 7,, or the temperature 7'. As this factor

tends to unity at zero temperature, the semiclassical
free-energy shell component OF,, (16) turns into

the =zero temperature shell-correction energy
oU, =Z5UW. At finite temperature the free-

p.o.

energy shell correction O0F,, differs from the shell
by the
entropy contribution 765, through the standard

correction 0E , of the internal energy E

scl

relationship
6Evcl = 5F;cl + T 55?01 b (17)

where JS,, is the corresponding entropy shell
correction [15]. In the =zero temperature limit,
T — 0, the internal-energy shell correction SE,

coincides, of course, with the semiclassical energy
shell component oU_, . Notice also that for the HO

scl *

case with the help of (15) for 5@, one exactly

B

obtains (9) without refering to the statistically
equilibrium condition (6).

For the deformed HO potential, one has to
consider two cases concerning different (rational or

irrational) ratios of the frequencies @, and o,

(o, =o, =@, ). Following basically Ref. [24], one

finds mainly the well-known p. o. families
(Lissajous  figures) with different classical
degeneracies K =4 and 2 depending on the

commensurable or
relations [15, 24].

incommensurable frequency
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(1) 2D ORBITS. We shall consider first the case
of the partially commensurable frequencies of the
axially-symmetric HO with irrational value of 77. In
that case, there are no isolated 3-dimensional (3D,
K =4) families. However, the 2D equatorial (EQ)
families of periodic orbits of smaller degeneracy
K =2 mainly exist with a given period number »
in the (x,y) plane (z=0), perpendicular to the
symmetry z axis. The time of motion along the p. o.

of the family, ¢, =nTj, , is determined by the main

period T, (frequency @, ) of the primitive (n=1)
this Tpp =27 0y =
and n_ are

mutually simple integer numbers. For the
contribution of the EQ (K =2) orbits into the

energy shell correction 6U_, one writes [8, 24]

:Z§Ufga

p.o. in (x,y) plane,

=27nn, /o, =27n/ow,, where n,

sU,° =

n

sin[27rni/ha)EQ), (18)

n

where F is the Gutzwiller

n

stability factor,
F = 4sin’ (ﬂna)z /a)EQ) .
(i1) 3D ORBITS. For the case of rational ratios of

frequencies, o, 1@, =n, :n_,

z

one finds the time of
particle motion, ¢, =nT;,, through the period of its
motion along the 3D p. o. of the K =4 family,

2 2%, )

an

T - 2 2mn,
3D T - -
Wy, O o, 0

(19)

For the commensurable case at deformations
n>1, the EQ orbits mentioned above yield the
oU £Q (18) of the partially

commensurable case (i) to the energy shell
corrections oU_, together with the contribution of

scl

contributions

3D orbits 0U,, which leads to their interference in

the level density and energy shell corrections [24],
oU,, =0U,, +3U,,,
(20)

RO 2znl

oU;, = (2”) ho 32_

n

—n(2n, +n_)|.

0)3 D

Comparison with quantum calculations

Fig. 1 shows a comparison of the semiclassical
(SCL) free-energy shell corrections, JF,, with both

scl
oF

scl »

the internal-energy shell corrections, see
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Eq. (17), and the quantum (QM) results obtained by
the Strutinsky shell correction method [11, 12] at a

finite temperature 7 =0.1 (in units 7@, of the HO

shell spacing energy) for the critical bifurcation
deformations 77 =1, 6/5 and 2. For our major aim

being to establish a comparison of the numerical
quantum and analytical POT results for these shell-
structure components, it is convenient to use the
chemical potential A as a variable, rather than its

smooth counterpart A, defined by the particle
number N :Z;ﬁi’ with the averaged occupation

numbers 7; [11, 12]. With the particle number
relation N = Zini which relates A4 to the particle

number via the Fermi occupation numbers #,,
[Eq. (2) at @=0], one may always re-express OF
and 0F as functions of the particle-number variable
N'"?. The so-called plateau condition, i.e. the
independence of the shell-structure internal energy
OE and free energy 6F on the parameters of the
Strutinsky smoothing, namely the Gaussian width ¥

and the degree of the correction polynomial M , is
nicely satisfied for y =1.5-2.5 he, and M =4-8.

We may therefore use any value for these
parameters in our calculations of the smooth parts
E,, and f = of the single-particle internal energy

and free energy £, , respectively, without any

5.p.
noticible change of the results within the precision
of lines. As seen from Fig. 1, one obtains perfect
agreement of the semiclassical and quantum results.
Notice that this agreement is not exact but it is
associated with the leading term of the free-energy
shell-correction expansion in % for any temperature,
in contrast to the POT level density calculations
which reproduce exactly the s.p. spectrum for the
HO potential at zero temperature [13, 15, 17]. It is in
line of the standard WKB results, based on
separation  variables, in  the  asymptotic
(semiclassical) limit of a large oscillator quantum
number but formulated namely for the free-energy
shell corrections for which one can use the s.p.
picture in the SCM. A large effect of the entropy
component 7065, of the internal-energy shell

corrections OE as compared to the free energy
contribution O0F is clearly seen in this Figure. For
the spherical symmetry-breaking limit 7 =1 one has
the contribution of the only K =4 degenerated
families of 3D orbits (see Egs. (16) and (20)). The
relatively simple most degenerated (K =4 ) families
of 3D orbits appear along with the EQ orbits of
smaller degeneracy at the bifurcation points 6/5 and
2. For n=1.2 one has mainly the contribution of
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EQ orbits because the 3D p.o.s are too long here. For
the superdeformed 7 =2 shape one finds a large-
scale interference of comparably large contributions
of 3D and EQ orhits (see Eas. (20) and (18).
respectively) wit
motion, T;, =247,

Fig. 1. One observes, indeed, a modulation of the
amplitude of the 3D trajectories with smaller period
(as function of A), hw,,=27h/T,,, by the
nf FO writh

arhite

contrihntion

larger period

Fig. 1. Shell corr
A for th

;al potential
'@y, .

Fig. 2. Shell-structure moments of inertia 6®_ (9), (16) - (20) (in units of %/®,) as functions of the particle number

variable N'? at temperatures 7 =0.1 and 0.2 in units of 7, ; 3D frequent dots show the contribution of 3D orbits; EQ
thin dashed presents EQ orbit contribution for temperature 7 = 0.1 ; EQ thick dashed is the EQ orbit term for 7=0.2 .

Fig. 2 shows a perfect agreement between the
semiclassical and quantum results for the shell

corrections 0@ to the moment of inertia for the
same critical deformations 77. From this Figure one
can see a similar periodic-orbit structure for these
bifurcation deformations because of 00 ocoF .

Again, one finds the same nice interference of the 3D
and EQ orbit contributions to the shell corrections to
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the moment of inertia at 7=2. There is a well-

known difference of the concave shape of parabolas-
like minima for the A dependence in Fig.1 to a
convex shape of maxima for the case of the particle-
number variable N'* in Fig. 2 because of the shell

oscillations of A(N) = A+64 in the SCM, where 1

is the smooth chemical potential mentioned above.
The exponential decrease with increasing temperature
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T, owing to the temperature damping factor
Q(t,T/h) of Eq. (16), is clearly seen in this Figure.
This corresponds approximately to the critical
temperature value of the disappearance of shell
effects in 6F, T, =hwy,/7n ~ho/xr~2-3 MeV
(n>1) for particle numbers N =100—200 in a
heated Fermi system [8, 15] at large enough
deformations 77 [, ~(40/ N "*YMeV]. The critical

temperature 7, becomes slowly larger with
increasing deformations 7.
Conclusions

We analysed the shell-structure of the internal
energy OFE and free energy OJOF at finite
temperature within the SCM by using an averaging
over the chemical potential A in terms of the shell
components of both the level density and occupation
numbers. These shell-structure energies are
characteristic of heated Fermi systems near the
Fermi surface. The POT expansions over periodic
orbits of these energies are discussed for any
potential well in relation with the well-known shell-
structure components of the thermodynamical
potential of the grand-canonical ensemble. A
remarkable agreement is obtained for these POT
expressions as functions of the chemical potential
and particle number at critical deformations of the
harmonic oscillator potential, as compared with the
corresponding quantum results. We found a rather
large effect in the difference of JE and 0F owing
to the entropy contribution 768
temperatures much smaller than the
between gross shells.

We found the relation of shell components of the
collective moment of inertia to the free energy shell
corrections for a Fermi system within the
semiclassical approach based on the extended
Gutzwiller POT. This relation was obtained via the
rigid-body inertia shell corrections for statistically

even for
distance

equilibrium rotation. For the particular case of the
hlo +o. .
(=== [ayaz +ala
2| Jo,0.

It is convenient now to use the Heisenberg
representation,  a,(B)=e""va e, for the

annihilation a, () and corresponding creation

a.(B)

imaginary time f =it. The Heisenberg dynamical

operators depending formally on the

equations for these operators can be written in the
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HO potential we have shown that it is exact, and in
this sense, the condition of the statistically
equilibrium rotation which leads to the rigid-body
moment of inertia can be considered as a
selfconsistency condition. The semiclassical shell
components of the moments of inertia are obtained
as a sum over periodic orbits in a potential well. For
the deformed HO potential we have shown the
perfect agreement between the semiclassical POT
and quantum results for these shell corrections at
several critical bifurcation deformations and
temperatures. The moment of inertia has the
spherical limit of alignment of the individual-
particle angular momenta along the symmetry axis.
We confirmed the exponential decrease of all shell
corrections with growing temperature at the same
critical temperature 7, as for the free-energy shell

corrections.

It would be worth to apply the general ideas of
this semiclassical theory to the shell corrections of
the moments of inertia for the spheroid cavity and
for the inertia parameter of the low-lying collective
excitations in nuclear dynamics involving nuclei
close to magic numbers [18, 20, 25, 26].

We thank Profs. S. Aberg, S.Yu. Antonov,
M. Brack, F. A. Ivanyuk, S. N. Fedotkin, V. O. Ne-
sterenko, A. S. Nikitin, V. V. Pashkevich,
V. A. Plyjko, K. Pomorski, A. 1. Sanzhur,
A. 1. Vdovin, and V. G. Zelevinsky for many helpful
stimulating discussions.

Appendix A:
Exact quantum solutions for harmonic oscillator

By using the standard transformation from the
phase space variables &, p, to the creation a, and

annihilation a, operators, k¥ = x, y, z, for the single-
particle Routhian H, (1) one has [7]

H,=Yho(ala +1/2)-ol,, (Al

where
»,—o
Z]— — [ayaz +a;az+j (A2)
0,0,
Liouville form,
A(B)=LA(p), (A3)

with the vector operator A(f) and a Liouville 4 x 4
matrix £ (in % =1 units) given by
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a, -0, 0 p —q
A = ay L= 0 o q -p
a | pr —q —o. 0 ’
ar g -p 0 o
For the formal solution one finds
A(B)=D(S) A(0), D(B)=e"". (AS)

Introducing the correlation matrix C,
Co = (A4,(B)A4,(0))=(4,(0)4,(0),  (A6)

one may write the following system of equations for
the C,,:

Z[(Dm(ﬁ)_é‘m] Copp =M

p:

(A7)

\/7Rd

where M, is the antisymmetric matrix with

M, =1forv=2, u=1and v=4, y=3, and zeros

otherwise in matrix M , J,, is the Kronecker symbol.

\Z

Its formal solution for the correlation matrix ¢ is
given by

c=o'M, D'=(®(p)-1)", (A8)
with I being the 4x4 unit matrix. The Liouville

operator £ of (A4) has 4 eigenvalues for the
Routhian A, (A1) [5],

2 2 2 2
o+ O -
:a)2+ y Zi y z 1+ 2“ 2 i
2 2 o —

(A9)

H-%N

According to Refs. [22, 23], as the Liouville
matrix has 4 eigenvalues, the inverse matrix ®~' of
(A8) can be approximated by the cubic polynomial
under the conditions formulated there through its 4
unknown constants 7, ,

p:

In) a)y+a)z

2 Joo '
0,0, 0,0,

(A4)

| These constants are defined by 4 linear equations:

3

Z;f @, =N,

v=0

—(Ng +1),

DDy, @ =

Ng = (e 1), (A11)

with the simple solutions

1 (e +1/2) o -(NS+112) &’
Yo = _59 "= o, ( ) ’
(Ne +1/2) 0. —(N% +1/2) o,
7,=0, yy= T . (A12)
00, (ag - a)_]
For instance, for relatively large S (small

temperatures, 7/hw, < 1) one may use analytically
the corresponding expansion in powers of a large
pL and Eq.(A10) becomes the identity.
Substituting (A12) into the inversed matrix @~
(A10) we calculate explicitly the correlation matrix
elements C,, (A8). After a lengthy derivation of the
average of the single-particle angular momentum
<€ . >,- in a state i through (A2) and

w(fx>i =p

one arrives exactly at the same Zelevinsky’s result
[5] for arbitrary frequency @,

(C14 +Cz3)_Q(C13 +C24) (A13)

3
=YL (A10)
v=0 |
N +1/2( | @)+ N +1/2( | o, +
(1), :a{ =1 (2 , —1J - ( P ], (A14)
o 0} W, — @’ , W, — @
where N are the Bose temperature- and 0 () Z e x)).
* ®)=) n =
frequency-dependent distributions of (All). By ~ ' o
summation of (A14) over the single-particle states i .
one obtains a simple expression for the kinematic Ot [N(_U _ij_[ NY +N_‘_"j
moment of inertia ® (@) [5], for arbitrary o -o'\o o o, o
frequency @ NY = z n’Ne. (A15)
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We emphasize that this expression can be, under the
conditions of Refs. [22, 23], applied for finite
temperatures 7 =1/ which appear through the

oscillator Bose occupation numbers N, in (All).

The dynamic moment of inertia of Eq. (3) is
determined by the direct differentiation of (A14) with
respect to @. Both definitions of the moment of
inertia lead to the same adiabatic expression, Eq. (5).
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KBA3IKJIACUYHA OBOJIOHKOBA CTPYKTYPA MOMEHTY IHEPIIII
Y HATPITUX ®EPMI-CUCTEMAX

O.T. Maruep, A. C. CitnikoB, A. A. Xam3in, /I’x. baptena, A. M. I'kebincbkuii

AHaNTHYHO BHBEIEHO MOMEHT IHEpIi KOJIEKTHBHOTO OOEpTaHHS B paMKaxX KPEHKIHT-MOJENl Yy BHNAAKY
raMiJIbTOHIaHa TAPMOHIYHOTO OCHHJISITOpA JUIsl OyAb-SIKMX YacTOT MPU CKIHYEHUX TeMIleparypax. 3a JIOIMOMOrok0 Teopil
NepioANYHUX OpOIT OTPUMAHO CITIBBIJHOIICHHS KBa3iKJIIACHYHUX OOOJIOHKOBHX IONPAaBOK JO MOMEHTY iHepuii Ta
BiJIbHOI eHeprii uepe3 OOOJIOHKOBHH KOMIIOHEHT TBEPJAOTUIBHOTO MOMEHTY IHEpIii CTaTUCTUYHO PiBHOBAXHOTO
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obepranns Harpitux depmi-cucTeM. IX aHanmiTHYHA CTPYKTypa, BUpaKeHa 4depe3 eKBaTopiadbHi i 3-MipHi mepioguyHi
OpOiTH B aKciaJbHO-CUMETPHUYHOMY IIOTEHIliali TAPMOHIYHOTO OCLUIISITOPA, 3HAXOIUTHCS B JOOPOMY Y3TODKEHHI 3
KBAaHTOBUMH PE3yJbTaTaMU MPU KPUTHYHUX JeopMallisx i Temmeparypax.

Kniouosi crnoea: monens nmpuMycoBoro oOepTaHHS siiep, MOMEHT iHepIii, Teopis nepiognyHuX opoOiT, 000JOHKOBI
TIOTIPaBKH JI0 €HEeprii, TOTEHIia] FapMOHIYHOTO OCIIIISTOpA.

KBA3UKJ/IACCUYECKASA OBOJIOYEYHASI CTPYKTYPA MOMEHTA HMHEPIIMHU
B HATPETBIX ®EPMH-CUCTEMAX

A.T.Marnep, A.C. Cutaukon, A. A. Xam3un, Jx. Baprea, A. H. I'kednnckmii

AHanUTHYECKU BBIBEEH MOMEHT HWHEPLUMH KOJIJIEKTMBHOIO BpAICHUS B paMKaX KpPEHKHHT-MOJAEIM B ClIydae
raMUJIBTOHHaHa TAPMOHUYECKOTO OCIMIUISITOPA JUIsl JII0OBIX 4aCTOT MPY KOHEYHBIX Temneparypax. C IOMOIIBI0 TEOpHH
NEPHOINYECKUX OPOHT TOJyYEHO COOTHOLIEHHE KBAa3UKIACCHYECKUX O0OJIOUEYHBIX MONPABOK K MOMEHTY MHEPIHH U
CBOOOMHOW »SHEpPruM dYepe3 OOOJOUEUHBIH KOMIIOHEHT TBEpPAOTEIFHOTO MOMEHTa HHEPLUUH CTaTHCTHYECKH
paBHOBecHOTO BpamieHHs Harpetslx @epmu-cucrem. WX aHamMTHYeCKass CTPYKTypa, BBIpaKCHHas depe3
9KBaTOpHAJIbHBIE U 3-MepHBIC Nepruoudeckue OpOUTHl B aKCHAIbHO-CHMMETPHYECKOM HOTEHIHAIE TapPMOHUIECKOTO
OCIIMJUIATOPA, HAXOIWTCS B XOPOIIEM COIJIACHM C KBAHTOBBIMH pE3yJbTaTaMH MPU KPUTHYECKHX AePOpPMAIMAX U
TeMIepaTypax.

Kniouegvie cnosa: Monenb MPUHYIUTEIFHOTO BPAIICHUS SIIPa, MOMEHT MHEPLUH, TEOPUS NEPHOANYECKUX OpOUT,
000JI04e4HBIe IONPABKU K SHEPTUH, MOTEHIHAJI [APMOHHYECKOTO OCLHIIIATOPA.
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