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The moment of inertia for collective rotation is derived analytically for the harmonic-oscillator Hamiltonian within 

the cranking model for any rotation frequency and at finite temperature. Semiclassical shell-structure moments of the 
inertia are obtained in terms of the free-energy shell corrections through the rigid-body inertia of the statistically 
equilibrium rotation of a heated Fermi system by using the periodic-orbit theory. Their analytical structure in terms of 
the equatorial and 3-dimensional periodic orbits for the axially-symmetric harmonic-oscillator potential is in perfect 
agreement with quantum results for critical deformations and temperatures.  
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Introduction 
 

Several theoretical approaches, in particular the 
cranking model, were used for the description of 
many remarkable properties of collective nuclear 
rotations [1 - 7]. It was shown [4, 6] that the 
moments of inertia can be presented as a sum of a 
smooth classical rigid-body term with the  
corrections of the Extended Thomas-Fermi approach 
(ETF) [8 - 10] and their shell corrections [4]. Such 
shell-nanostructure phenomena were successfully 
described on the basic of the mean-field approach 
within the shell correction method (SCM) [11, 12] 
adapted to the rotational problem in [4]. The 
independent particle model near the Fermi surface is 
used for calculations of the shell corrections to the 
free energy and moment of inertia. However, the 
total free energy and moment of inertia in the SCM 
are beyond this model. In particular, the smooth ETF 
parts can be associated with a leptodermic expansion 
in which the basic ingradient is the nuclear surface 
formed by a nuclear many-body interacton. For the 
shell correction calculations, it is worth to apply for 
solving this problem the semiclassical periodic orbit 
theory (POT) as one of the powerful and fruitful 
theoretical tools for the analytical understanding of 
the main features of shell structure in finite Fermion 
systems [8, 13 - 18]. The semiclassical shell 
corrections to the moments of inertia for rotations 
around the symmetry axis like alignment of the 
individual-particle angular momenta (the so called 
“classical rotation”) were derived within the POT at 
finite temperatures in terms of periodic orbits in [13] 
(see also [16, 17] for similar derivations of the 
magnetic susceptibilities). For collective rotations of 
deformed nuclei this periodic-orbit structure was 
considered semiclassically in Ref. [18] by applying 
the classical perturbation theory of Creagh [8, 19] to 
the spheroid cavity model.  

In the present work the shell components of the 
moments of inertia for the collective rotations within 
the nonperturbative POT based on the mean-field 
cranking model are derived asymptotically for large 
semiclassical parameter 1/ 3 1Fk R N∼  in terms of 
the free-energy shell corrections for nucleus with 
large enough particle numbers N , Fermi 
momentum Fk  in  units and a spatial size R . 
Explicit analytical results are obtained for the 
deformed harmonic oscillator potential. One of the 
main purposes is to use this simple completely 
analytical example as a test in order to find a general 
relation of the shell components of the moment of 
inertia to those of the rigid body through the free-
energy shell corrections valid for any mean-field 
potential well within the cranking model.  

 
Cranking model for nuclear rotations 

 
Within the cranking model, the collective nuclear 

rotation of an axially symmetric mean-field potential 
around the x  axis, perpendicular to the symmetry z  
axis, can be described by solving the eigenvalue 
problem for the single-particle (s.p.) Hamiltonian 
(Routhian) in the framework of a rotating coordinate 
system [3, 4, 6], 

 

x x s i x xi
i

H H d n Iωω
ω ω

ω= − , ≡ =∑ .    (1) 

 
Here, H  is the unperturbed Hamiltonian, x  the 
projection on to the x  axis of the angular-
momentum operator, and sd  the spin (spin-isospin) 
degeneracy. The Lagrangian multiplier ω  is the 
rotation frequency of the body-fixed coordinate 
system. Its value ( )xIω ω=  can be found from 
Eq. (1) for each given value of the constraint angular 
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momentum xI . The particle number conservation 
determines the chemical potential ωλ  through the 
occupation numbers inω  for a system of independent 
nucleons in the s.p. state i ,  
 

s i
i

N d nω= ,∑  

 
1{1 exp ( ) } ,i i in n Tω ω ω

ωε ε λ −⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤≡ = + − /⎣ ⎦        (2) 
 

with the eigenvalues i
ωε  of the Routhian Hω , 

Fωλ λ ε= ≈  at 0ω = , where Fε  is the Fermi 
energy, 2 2 2F Fk mε = / , Fk  the Fermi momentum in 
units of , m  the nucleon mass, and T  the 
temperature. The moment of inertia Θ ( )x ω  is 
defined similarly to the magnetic or isolated 
susceptibilities [16, 17, 21], 
 

2

2

( )Θ ( ) x
x

Eω ωω
ω ω

∂ ∂
= =

∂ ∂
,                   (3) 

 

where ( ) xE H I
ω

ω ω= +  is the energy of a Fermi 

system. The yrast line ( )xE I  can be obtained by  
 

elimination of the frequency ω  from the constraint 
of (1) at zero temperature T . 

For the case of the harmonic oscillator (HO) 
Hamiltonian the direct diagonalization (without 
using a perturbation expansion) of the Routhian, 
Eq. (1), yields for any frequencies ω  analytical 
expressions for the single-particle energies i

ωε  and 
the moments of inertia Θ ( )x ω  [5]. We extended 
these results to finite temperatures T  through the 
oscillator occupation numbers (see Appendix A for a 
detailed derivation based on Refs. [22, 23]). In the 
small rotation-frequency limit 0ω→  (adiabatic 
case) one uses the s.p. spectrum independent of ω , 

 

( ) ( )1 1 2i i z ziN Nε ω ω⊥ ⊥= + + + / ,  
 

i xi yiN N N⊥ = + ,                           (4) 
 

where xiN , yiN  and ziN  are the HO quantum 

numbers related to the partial HO frequencies xω , 

yω  and zω , x yω ω ω⊥= = . 

From Eq. (A15) for the moment of inertia Θ ( )x ω  
one finds [2, 3, 5] in the adiabatic limit 0ω→   

 

( ) ( ) ( )
2 2

Θ 1 2
2

z zs
x y z z y i i

iz z z

d
n Nκ κ

ω ω ω ω
ω ω ω ω ω ω

⎡ ⎤
⎢ ⎥⊥ ⊥⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥⊥ ⊥ ⊥⎣ ⎦

− +
= ℵ +ℵ + ℵ −ℵ , ℵ = + /

+ − ∑ ,                    (5) 

 

where x y zκ = , , , i in nω=  at 0ω = , according to 
Eq. (2). Notice that for the HO potential one may 
calculate analytically the matrix elements of the 
angular momentum projection operator x . 
Substituting these and the single-particle energies into 
the Inglis formula for the moment of inertia in 2nd 
order perturbation theory one also arrives at the 
expression, Eq. (5), of the nonperturbative derivation.  

For the statistically equilibrium rotation 
(selfconsistent relation [3]), 

 

x x y y z zω ω ωℵ = ℵ = ℵ ,                         (6) 
 

the moment of inertia (5) equals the rigid-body value 
given by 
 

( ) 2 2drig
x s y z zm y z dΘ ρ ω ω⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⊥⎝ ⎠⎝ ⎠
= + = ℵ / +ℵ /∫ r r , 

(7) 

where ( )ρ r  is the particle density. The first term in 
(5) is related to the coupling of single-particle levels 
through major N  shells ( 2N∆ = , see Ref. [3]) and 
the second term corresponds to transitions between 
levels inside a shell ( 0N∆ = ). In the spherical limit, 
this term reduces identically to the diagonal 
alignment moment of inertia, 
 

2Θ Θ (d d )x z s i i x
i

d n i iε→ → − / | | | |∑ .       (8) 

 
For calculations of the shell corrections, it is 

convenient to re-write the moment of inertia Θx , 
Eq. (5), in terms of the rigid body inertia Θrig

x , 
Eq. (7), and the free energy ( 0)F ω =  of the HO 
system at finite temperature T , 

 

( ) ( ) ( ) ( )2 4 2 2 2 2 2 2Θ 2 9 1 Θ 4 1 / 2 1 1rig
x x Fω η η η η ω η η⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⊥ ⊥⎣ ⎦ ⎣ ⎦
= + + − + − − , 

 

where η  is the deformation parameter, zη ω ω⊥= / , 
under the usual volume conservation condition, 

2 3
0zω ω ω⊥ = . Notice that in this way the oscillator 

quantum numbers yℵ  and zℵ  could be elliminated 
from Eqs. (5) and (7) through the explicit expression 
of the free energy F  for the ideal Fermi gas. 
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Calculating explicitly the rigid-body inertia Θrig
x  (7) 

for the HO and determining the shell components 
Θxδ  and Θzδ  by the SCM [11, 12], these are 

obtained in terms of the free energy shell correction 
Fδ , 

 

2 2 2Θ 1 3 Θ 2 3x zF Fδ η ω δ δ ω δ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⊥ ⊥⎝ ⎠ ⎝ ⎠⎣ ⎦

= + / , = / ,   (9) 
 

with the obvious spherical limit, Θ Θx zδ δ→  at 
1η → .  

 

Semiclassical shell-structure approach 
 

For the POT calculations, it turns out to be 
helpful to use the coordinate representation through 
the Green’s functions G  [12], 

( ) ( )1 2 1 2 1 2 1 2
0

2
Θ d ( ) d d ( ) ( ) Re , Ims

x x x
d

n G Gε ε ε ε
π

∞

= , , ,⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫ ∫r r r r r r r r ,                    (10) 

 

where ( )n ε  are the Fermi occupation numbers 
( )in ωε  at 0ω = , Eq. (2), and 1( )x r  and 2( )x r  are 

respectively the angular-momentum projections onto 
the x  axis for the particle at the spatial points 1r  and 

2r . With the usual energy spectral representation for 
the one-body Green’s function in the mean-field 

approximation, one has the well-known second order 
perturbation result of the cranking model [3, 4, 6]. 
However, we may also include semiclassically the 
diagonal terms into (10) as explained below. The 
Green’s function in (10) can be approximated by the 
semiclassical Gutzwiller trajectory expansion [14] 
extended to continuous symmetry [8, 15, 24], 

 

( ) ( ) ( )1 2 1 2 1 2, exp
2

i iG G Sα α α α
α α

πε ε ε µ
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, , = = , , , −∑ ∑r r r r r rA .                                   (11) 

 

The index α  covers all classical isolated paths 
inside the potential well which connect the two 
spatial points 1r  and 2r  for a given s.p. energy ε . 
Here Sα  is the classical action along such a 
trajectory α , and αµ  denotes a phase related to the 
Maslov index through the number of caustic and 
turning points along the path α  [8,15]. The 
amplitudes αA  of the Green’s function depend on 
the classical stability factors and trajectory 
degeneracy owing to the geometrical and dynamical 
symmetries of the given Hamiltonian (see Refs. [8, 
14, 15, 24] for their specific expressions).  

Among all classical trajectories α  in Eq. (11), 
we may single out one 0α  which connects directly 

1r  and 2r  without intermediate turning points. It is 
associated with the component 

0
Gα  of the sum (11). 

Therefore, for the Green’s function G , Eq. (11), one 
has then a separation, 

0 1G G Gα= + . In the nearly 
local approximation one finds 

 

( )
0 0 2 12

2 1

exp
2

m iG G pα π
⎛ ⎞ ⎧ ⎫≈ = − | − |⎨ ⎬⎜ ⎟| − | ⎩ ⎭⎝ ⎠

r r r
r r

 

 

for points that are spatially close 1 2→ →r r r , ( )p r  
is the particle momentum at 1 2( ) 2= + /r r r  (see 
Refs. [15, 21, 25, 26]). The second term 1G  is the 
fluctuating part of the Green’s function (11), 

0 1G G G≈ + , determined by other trajectories 

1 0α α≠  [15, 20, 24]. With this separation one 
obtains from (10)  

1

, 0

Θ Θx x
νν

ν ν

′

′=

= ,∑  

 

( ) ( ) ( )1 2 1 2Θ 2 d ( ) d dx s x xd nνν π ε ε′ = / ∫ ∫ ∫r r r r × 

 
( ) ( )1 2 1 2Re ImG Gν νε ε′× , , , ,⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦r r r r .         (12) 

 

The main smooth term of this moment sum for Θx  
is the Thomas-Fermi rigid-body component 
associated with averaging of 00Θx  over the phase-
space variables which removes the non-local 
correlations [21]. The  corrections of the smooth 
ETF approach to this TF approximation were 
obtained in Refs. [9, 10]. 

The shell-structure component 01Θxδ  of 01Θx  for 
the moment of inertia Θx , Eq. (12), can be related 
semiclassically to the shell correction ( )δρ r  of the 
particle density ( )ρ r  through that of the rigid body 
moment of inertia. Indeed, substituting the nearly 
local approximation 0G  into Eq. (12) for 0ν =  and 

1G  for 1ν ′ = , we select the shell component 01Θxδ  
of 01Θx  just as for the free-energy shell corrections 

Fδ . Using the transformation of the coordinates 1r  
and 2r  to the center-of-mass and relative coordinates 

1 2( ) 2= + /r r r  and 2 1= −s r r , as well as the 
spherical coordinates for s , 2d d sin d dφs s ss s θ θ=s  
one obtains for almost equilibrium rotation 
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( ) ( )01
2Θ d ( ) d d d dφ  sin 2 2

( )
s

x s s s x x
d m

n s sδ ε δ ε θ θ
π

⎛ ⎞
= − − / + /⎜ ⎟

⎝ ⎠
∫ ∫ ∫ ∫r r s r s × 

 

( ) ( ) ( )2 2
1cos ( ) Im 2 2 Θ drig

xp s G m y zε δ δρ⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤× / − / , + / , ≈ = +⎣ ⎦ ∫r r s r s r r .                        (13) 
 
For the classical angular-momentum projection in 
the integrand of the first expression in Eq. (13) we 
approximately wrote 
 

2 2 2 2( 2) ( 2) ( ) ( ) ( )x x x y z p− / + / ≈ = +r s r s r r . (14) 
 

Note that this classical angular-momentum 
projection ( )x r  in the rotating coordinate system is 
caused by the global rotation rather than by the 
motion of particles along the trajectories α  inside 
the nucleus. According to the time-reversible 
symmetry of the Routhian, the particles are, indeed, 
moving in the non-rotating ( 0ω = ) coordinate 
system along these trajectories in both directions 
with opposite signs of x  and their contributions to 
the total angular momentum of the nucleus turns out 
to be zero. We integrated then explicitly over s  and 
found sine squared in the integrand over ε  and r  
with the mean value 1/2 for the averaging over 
energies ε . Adding and subtracting identically this 
value 1/2 from the sine squared, we first integrate 
over spherical angles sθ  and φs  in the term related 
to this 1/2, writing simply 4π  because of the 
independence of this integrand of angles of the 
vector s . Performing then the integrations over ε  in 
this first term and taking smooth quantities in front 
of the sharply peaked function ( )nδ ε  at the energy 
ε λ=  one obtains the rigid-body shell correction 
component Θrig

xδ , as shown in Eq. (13). The 
cranking model for the nuclear rotation implies that 
the correlation corrections in (13) should be small 
enough with respect to the main rigid-body 
component Θrig

xδ  to be neglected. Other 
contributions obtained by using the stationary phase 
method [20], except for a smooth rigid-body part 
coming from 00Θx , can also be referred to a 
fluctuation correction to the rigid-body moment of 
inertia. Finally, for the semiclassical shell 
corrections to the moments of inertia for 
perpendicular Θx sclδ ,  and parallel Θz sclδ ,  
(alignment along the symmetry axis) rotation, we 
arrive for the deformed HO with Eq. (9) at the 
following expressions 
 

2 2Θ Θ 1 3rig
x scl x scl sclFδ δ η ω δ⎡ ⎤⎛ ⎞

⎢ ⎥⎜ ⎟, , ⊥⎝ ⎠⎣ ⎦
≈ = + / , 

 
2Θ Θ 2 3rig

z scl z scl sclFδ δ ω δ⎛ ⎞
⎜ ⎟, , ⊥⎝ ⎠

≈ = / .           (15) 

Here, sclFδ  is the semiclassical periodic-orbit (p.o.) 
sum for the free energy shell component [8, 13, 15, 
16], 
 

( )scl p o p o
p o

F T N U Qδ δ ⎛ ⎞
⎜ ⎟. . .⎝ ⎠

. .

, = ∑ Z , 

 

( )
sinh( )

Q π
π

=
Z

Z
Z

,     p o p ot T. . . .= /Z ,          (16) 

 

p oUδ . .  is the p.o. component of the semiclassical 

energy shell correction, and p ot . .  is the time of 
particle motion along the p.o. [8,15]. The 
temperature-dependent factor . .( / )p oQ t T  in (16) 
decreases exponentially with increasing the p.o. 
period . .p ot  or the temperature T . As this factor 
tends to unity at zero temperature, the semiclassical 
free-energy shell component sclFδ  (16) turns into 
the zero temperature shell-correction energy 

. .
. .

scl p o
p o

U Uδ δ= ∑ . At finite temperature the free-

energy shell correction sclFδ  differs from the shell 
correction sclEδ  of the internal energy sclE  by the 
entropy contribution sclTδS  through the standard 
relationship 
 

scl scl sclE F Tδ δ δ= + S ,                  (17) 
 

where sclδS  is the corresponding entropy shell 
correction [15]. In the zero temperature limit, 

0T → , the internal-energy shell correction sclEδ  
coincides, of course, with the semiclassical energy 
shell component sclUδ . Notice also that for the HO 
case with the help of (15) for Θrig

x sclδ ,  one exactly 
obtains (9) without refering to the statistically 
equilibrium condition (6).  

For the deformed HO potential, one has to 
consider two cases concerning different (rational or 
irrational) ratios of the frequencies ω⊥  and zω  
( x yω ω ω⊥= = ). Following basically Ref. [24], one 
finds mainly the well-known p. o. families 
(Lissajous figures) with different classical 
degeneracies 4=K  and 2  depending on the 
commensurable or incommensurable frequency 
relations [15, 24].  
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(i) 2D ORBITS. We shall consider first the case 
of the partially commensurable frequencies of the 
axially-symmetric HO with irrational value of η . In 
that case, there are no isolated 3-dimensional (3D, 

4=K ) families. However, the 2D equatorial (EQ) 
families of periodic orbits of smaller degeneracy 

2=K  mainly exist with a given period number n  
in the ( )x y,  plane ( 0z = ), perpendicular to the 
symmetry z  axis. The time of motion along the p. o. 
of the family, n EQt n= T , is determined by the main 
period EQT  (frequency EQω ) of the primitive ( 1n = ) 

p.o. in this ( )x y,  plane, 2EQ EQπ ω= / =T  

2 2 z zn nπ ω π ω⊥ ⊥= / = / , where n⊥  and zn  are 
mutually simple integer numbers. For the 
contribution of the EQ ( 2=K ) orbits into the 
energy shell correction sclUδ  one writes [8, 24] 

 
EQ

EQ n
n

U Uδ δ= ,∑  

 

( )

2

2

2
sin 2

2
s EQEQ

n EQ
n

d
U n

n

λ ω
δ π λ ω

πω
⎛ ⎞
⎜ ⎟
⎝ ⎠

⊥

= /
F

,  (18) 

 

where nF  is the Gutzwiller stability factor, 

( )24sin /n z EQnπ ω ω=F .  
(ii) 3D ORBITS. For the case of rational ratios of 

frequencies, z zn nω ω⊥ ⊥: = : , one finds the time of 
particle motion, 3n Dt n= T , through the period of its 
motion along the 3D p. o. of the 4=K  family, 

 

1 32
3

3 0

2 2 2 2 .z
D z

D z

n n n nπ π π π
ω ω ω ω

/⎛ ⎞⊥
⎜ ⎟⊥⎝ ⎠

⊥

= = = =T     (19) 

 

For the commensurable case at deformations 
1η > , the EQ orbits mentioned above yield the 

contributions EQUδ  (18) of the partially 
commensurable case (i) to the energy shell 
corrections sclUδ  together with the contribution of 
3D orbits 3DUδ  which leads to their interference in 
the level density and energy shell corrections [24], 

 

3 ,scl D EQU U Uδ δ δ= +  
(20) 

( )
2 2

3
3 2 3 2

0 3

1 2cos 2
(2 )

s D
D z

n D

d nU n n n
n

λ ω π λδ π
π ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥⊥⎢ ⎥
⎢ ⎥⎣ ⎦

= − +∑ . 

 
Comparison with quantum calculations 

 
Fig. 1 shows a comparison of the semiclassical 

(SCL) free-energy shell corrections, sclFδ  with both 
the internal-energy shell corrections, sclEδ , see 

Eq. (17), and the quantum (QM) results obtained by 
the Strutinsky shell correction method [11, 12] at a 
finite temperature 0 1T = .  (in units 0ω  of the HO 
shell spacing energy) for the critical bifurcation 
deformations 1η = , 6 5/  and 2 . For our major aim 
being to establish a comparison of the numerical 
quantum and analytical POT results for these shell-
structure components, it is convenient to use the 
chemical potential λ  as a variable, rather than its 
smooth counterpart λ , defined by the particle 
number ii

N n=∑ , with the averaged occupation 
numbers in  [11, 12]. With the particle number 
relation ii

N n= ∑  which relates λ  to the particle 

number via the Fermi occupation numbers in , 
[Eq. (2) at 0ω = ], one may always re-express Fδ  
and Eδ  as functions of the particle-number variable 

1 3N / . The so-called plateau condition, i.e. the 
independence of the shell-structure internal energy 

Eδ  and free energy Fδ  on the parameters of the 
Strutinsky smoothing, namely the Gaussian width γ  
and the degree of the correction polynomial M , is 
nicely satisfied for 01 5 2 5γ ω= . − .  and 4 8M = − . 
We may therefore use any value for these 
parameters in our calculations of the smooth parts 

s pE . .  and s pF . .  of the single-particle internal energy 

s pE . .  and free energy s pF . . , respectively, without any 
noticible change of the results within the precision 
of lines. As seen from Fig. 1, one obtains perfect 
agreement of the semiclassical and quantum results. 
Notice that this agreement is not exact but it is 
associated with the leading term of the free-energy 
shell-correction expansion in  for any temperature, 
in contrast to the POT level density calculations 
which reproduce exactly the s.p. spectrum for the 
HO potential at zero temperature [13, 15, 17]. It is in 
line of the standard WKB results, based on 
separation variables, in the asymptotic 
(semiclassical) limit of a large oscillator quantum 
number but formulated namely for the free-energy 
shell corrections for which one can use the s.p. 
picture in the SCM. A large effect of the entropy 
component sclTδS  of the internal-energy shell 
corrections Eδ  as compared to the free energy 
contribution Fδ  is clearly seen in this Figure. For 
the spherical symmetry-breaking limit 1η =  one has 
the contribution of the only 4=K  degenerated 
families of 3D orbits (see Eqs. (16) and (20)). The 
relatively simple most degenerated ( 4=K ) families 
of 3D orbits appear along with the EQ orbits of 
smaller degeneracy at the bifurcation points 6 5/  and 
2 . For 1.2η =  one has mainly the contribution of 
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EQ orbits because the 3D p.o.s are too long here. For 
the superdeformed 2η =  shape one finds a large-
scale interference of comparably large contributions 
of 3D and EQ orbits (see Eqs. (20) and (18), 
respectively) with different periods of particle 
motion, 3 2D EQ=T T , as seen from the bottom part of 

Fig. 1. One observes, indeed, a modulation of the 
amplitude of the 3D trajectories with smaller period 
(as function of λ ), 3 32 /D Dω π=  T , by the 
contribution of EQ orbits with larger period 

2 / EEQ Qω π= T .  
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Fig. 1. Shell corrections to the internal energies Eδ  and free energies Fδ  as functions of the chemical potential 
λ  for the critical deformations 1,1.2η =  and 2 at a temperature of 0.1T = in the HO units 0ω . 
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Fig. 2. Shell-structure moments of inertia Θxδ  (9), (16) - (20) (in units of 0/ω ) as functions of the particle number 
variable 1/3N  at temperatures 0.1T =  and 0.2 in units of 0ω ; 3D frequent dots show the contribution of 3D orbits; EQ 
thin dashed presents EQ orbit contribution for temperature 0.1T = ; EQ thick dashed is the EQ orbit term for 0.2T = . 

 
Fig. 2 shows a perfect agreement between the 

semiclassical and quantum results for the shell 
corrections Θxδ  to the moment of inertia for the 
same critical deformations η . From this Figure one 
can see a similar periodic-orbit structure for these 
bifurcation deformations because of Θx Fδ δ∝ . 
Again, one finds the same nice interference of the 3D 
and EQ orbit contributions to the shell corrections to 

the moment of inertia at 2η = . There is a well-
known difference of the concave shape of parabolas-
like minima for the λ  dependence in Fig. 1 to a 
convex shape of maxima for the case of the particle- 
number variable 1 3N /  in Fig. 2 because of the shell 
oscillations of ( )Nλ λ δλ= +  in the SCM, where λ  
is the smooth chemical potential mentioned above. 
The exponential decrease with increasing temperature 
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T , owing to the temperature damping factor 
( )nQ t T /  of Eq. (16), is clearly seen in this Figure. 

This corresponds approximately to the critical 
temperature value of the disappearance of shell 
effects in Fδ , 0 2 3cr EQT ω π ω π= / / ≈ −∼  MeV 
( 1η > ) for particle numbers 100 200N ≈ −  in a 
heated Fermi system [8, 15] at large enough 
deformations η  [ 1/ 3

0 (40 / )Nω ≈ MeV]. The critical 
temperature crT  becomes slowly larger with 
increasing deformations η . 

 
Conclusions 

 
We analysed the shell-structure of the internal 

energy Eδ  and free energy Fδ  at finite 
temperature within the SCM by using an averaging 
over the chemical potential λ  in terms of the shell 
components of both the level density and occupation 
numbers. These shell-structure energies are 
characteristic of heated Fermi systems near the 
Fermi surface. The POT expansions over periodic 
orbits of these energies are discussed for any 
potential well in relation with the well-known shell-
structure components of the thermodynamical 
potential of the grand-canonical ensemble. A 
remarkable agreement is obtained for these POT 
expressions as functions of the chemical potential 
and particle number at critical deformations of the 
harmonic oscillator potential, as compared with the 
corresponding quantum results. We found a rather 
large effect in the difference of Eδ  and Fδ  owing 
to the entropy contribution TδS  even for 
temperatures much smaller than the distance 
between gross shells.  

We found the relation of shell components of the 
collective moment of inertia to the free energy shell 
corrections for a Fermi system within the 
semiclassical approach based on the extended 
Gutzwiller POT. This relation was obtained via the 
rigid-body inertia shell corrections for statistically 
equilibrium  rotation.  For  the  particular  case of the  

HO potential we have shown that it is exact, and in 
this sense, the condition of the statistically 
equilibrium rotation which leads to the rigid-body 
moment of inertia can be considered as a 
selfconsistency condition. The semiclassical shell 
components of the moments of inertia are obtained 
as a sum over periodic orbits in a potential well. For 
the deformed HO potential we have shown the 
perfect agreement between the semiclassical POT 
and quantum results for these shell corrections at 
several critical bifurcation deformations and 
temperatures. The moment of inertia has the 
spherical limit of alignment of the individual-
particle angular momenta along the symmetry axis. 
We confirmed the exponential decrease of all shell 
corrections with growing temperature at the same 
critical temperature crT  as for the free-energy shell 
corrections.  

It would be worth to apply the general ideas of 
this semiclassical theory to the shell corrections of 
the moments of inertia for the spheroid cavity and 
for the inertia parameter of the low-lying collective 
excitations in nuclear dynamics involving nuclei 
close to magic numbers [18, 20, 25, 26].  
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Appendix A:  

Exact quantum solutions for harmonic oscillator 
 
By using the standard transformation from the 

phase space variables pκκ,  to the creation aκ
+  and 

annihilation aκ  operators, x y zκ = , , , for the single-
particle Routhian Hω  (1) one has [7] 

 

( )1 2k xH a aω κ κ
κ

ω ω+= + / −∑ ,      (A1) 

where 
 
 

2
y z y z

x y z y z y z y z
y z y z

a a a a a a a a
ω ω ω ω

ω ω ω ω

⎡ ⎤
⎢ ⎥

+ + + +⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥
⎢ ⎥⎣ ⎦

+ −
= + − + .                                  (A2) 

 
It is convenient now to use the Heisenberg 

representation, ( ) H Ha e a eω ωβ β
κ κβ −= , for the 

annihilation ( )aκ β  and corresponding creation 
operators ( )aκ β+  depending formally on the 
imaginary time itβ = . The Heisenberg dynamical 
equations for these operators can be written in the 

Liouville form, 
 

( ) ( )β β=A AL ,                             (A3) 
 

with the vector operator ( )βA  and a Liouville 4 × 4 
matrix L  (in 1=  units) given by 
 
 



A.G. MAGNER,  A.S. SITDIKOV,  A.A. KHAMZIN  ET  AL. 

                                                                                                                                     ЯДЕРНА  ФІЗИКА  ТА  ЕНЕРГЕТИКА   Т. 10, № 3   2009 246

 

0
0

0
0

2 2

y y

y y

z z

zz

a p q
a y z y zq p

a p q
y z y zq pa

p q
ω

ω

ω
ω

ω ω ω ωω ω
ω ω ω ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

+⎜ ⎟
⎝ ⎠

⎛ ⎞− −⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟− −
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+ −
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For the formal solution one finds 
 

( ) Φ( ) (0) Φ( ) eββ β β= , =A A L .       (A5) 
 

Introducing the correlation matrix C , 
 

( ) (0) (0) (0)A A A Aνµ ν µ µ νβ= =C ,      (A6) 
 

one may write the following system of equations for 
the νµC : 
 

Φ ( )νλ νλ λµ νµ
λ

β δ⎡ ⎤
⎢ ⎥⎣ ⎦− =∑ C M ,               (A7) 

 

where νµM  is the antisymmetric matrix with 
1νµ =M  for 2 1ν µ= , =  and 4 3ν µ= , = , and zeros 

otherwise in matrixM , νλδ  is the Kronecker symbol. 
Its formal solution for the correlation matrix C  is 
given by 
 

( ) 1-1 1 Φ( )β −− = −,C = D M D I ,     (A8) 
 

with I  being the 4 4×  unit matrix. The Liouville 
operator L  of (A4) has 4 eigenvalues for the 
Routhian Hω  (A1) [5], 
 

2 2 22 2 2 2
2 2

2 2

8
1

2 2
y zy z y z

y z

ω ω ωω ω ω ω
ω ω

ω ω

⎛ ⎞
⎜ ⎟
⎝ ⎠

±

++ −
= + ± +

−
. 

(A9) 
 

According to Refs. [22, 23], as the Liouville 
matrix has 4 eigenvalues, the inverse matrix 1−D  of 
(A8) can be approximated by the cubic polynomial 
under the conditions formulated there through its 4 
unknown constants νγ , 

 

3
1

0

ν
ν

ν

γ−

=

= ∑D L .                     (A10) 
 

These constants are defined by 4 linear equations: 
 

3

0
iNν ω

ν
ν

γ ω± ±
=

= ,∑  

 

( )
3

0
( 1) 1iNν ν ω

ν
ν

γ ω± ±
=

− = − + ,∑  

 

( ) 1
1iN eβωω ±

−

± = − ,                (A11) 
 

with the simple solutions 
 

( ) ( )3 3

0 1 2 2

1 2 1 21
2

i iN Nω ωω ω
γ γ

ω ω ω ω
− + + −

⎛ ⎞
⎜ ⎟− + + −⎝ ⎠

+ / − + /
= − , =

−
, 

 

( ) ( )
2 3 2 2

1 2 1 2
0 i iN Nω ωω ω

γ γ
ω ω ω ω

+ − − +

⎛ ⎞
⎜ ⎟− + + −⎝ ⎠

+ / − + /
= , =

−
.  (A12) 

 
For instance, for relatively large β  (small 
temperatures, 0 1T ω/ ) one may use analytically 
the corresponding expansion in powers of a large 
βL  and Eq. (A10) becomes the identity. 
Substituting (A12) into the inversed matrix 1−D  
(A10) we calculate explicitly the correlation matrix 
elements νµC  (A8). After a lengthy derivation of the 
average of the single-particle angular momentum 

x i
 in a state i  through (A2) and 

 
( ) ( )14 23 13 24x i

p qω = + − +C C C C          (A13) 
 

one arrives exactly at the same Zelevinsky’s result 
[5] for arbitrary frequency ω , 

2 2 2 2

2 2 2 2

1 2 1 2
2 1 2 1y z y zi i

x i

N Nω ωω ω ω ω
ω

ω ω ω ω ω ω
− +

− + − + + −

⎡ ⎤⎛ ⎞ ⎛ ⎞+ ++ / + /
= − − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

,                     (A14) 

 

where iNω
±  are the Bose temperature- and 

frequency-dependent distributions of (A11). By 
summation of (A14) over the single-particle states i  
one obtains a simple expression for the kinematic 
moment of inertia Θ ( )x ω  [5], for arbitrary 
frequency ω  
 

Θ ( ) x i
x i

i

nωω
ω

= =∑  
 

2 2

2 22 y z
ω ω ω ωω ω

ω ω ω ω ω ω
− + + −

+ − − + + −

+ ⎛ ⎞ ⎛ ⎞ℵ ℵ ℵ ℵ
= − − + ,⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

 

 

i i
i

n Nω ω ω
± ±ℵ = ∑ .                   (A15) 
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We emphasize that this expression can be, under the 
conditions of Refs. [22, 23], applied for finite 
temperatures 1T β= /  which appear through the 
oscillator Bose occupation numbers iNω

±  in (A11). 

The dynamic moment of inertia of Eq. (3) is 
determined by the direct differentiation of (A14) with 
respect to ω . Both definitions of the moment of 
inertia lead to the same adiabatic expression, Eq. (5). 

 
REFERENCES 

 
1. Inglis D.R. Particle derivation of nuclear rotation 

properties associated with surface wave. // Phys. Rev. 
- 1954. - Vol. 96, No. 4. - P. 1059; Dynamics of 
nuclear deformation // Phys. Rev. - 1955. - Vol. 97, 
No. 3. - P. 701; Nuclear moments of inertia due to 
nucleon motion in a rotating well // Phys. Rev. - 1956. 
- Vol. 103, No. 6. - P. 1786. 

2. Bohr A., Mottelson B.R. // Mat. Fys. Medd. Dan. Vid. 
Selsk. - 1955. - Vol. 30, No. 1.  

3. Bohr A., Mottelson B.R. Nuclear Structure. Vol. II. - 
N.Y.: Benjamin, 1975.  

4. Pashkevich V.V., Frauendorf S. Effect of the shell 
structure on the moment of inertia; Behavior of the 
averaged moment of inertia // Sov. J. Nucl. Phys. - 
1975. - Vol. 20, No. 6. - P. 588.  

5. Zelevinsky V.G. A simple model of a rapidly rotating 
nucleus // Sov. J. Nucl. Phys. - 1975. - Vol. 22, 
No. 6. - P. 1085. 

6. Mikhailov I.N., Neergard K., Pashkevich V.V., 
Frauendorf S. Effect of rotation on the collective 
properties of atomic nuclei // Sov. J. Part. Nucl. - 
1977. - Vol. 8. - P. 550. 

7. Afanasjev A.V., Fossan D.B., Lane G.J., Ragnarsson I. 
Termination of rotation band: Disappearance of 
quantum many-body correlations // Phys. Rep. - 1999. 
- Vol. 322. - P. 1. 

8. Brack M., Bhaduri R.K. Frontiers in Physics: Semi-
classical Physics. - Boulder: Westview Press, 2003. – 
458 p. 

9. Bencheikh K., Quentin P., Bartel J. Rotations in nuclei 
- a semiclassical description // Nucl. Phys. A. - 1994. - 
Vol. 571. - P. 518. 

10. Equilibrium deformations of rotating nuclei in a 
selfconsistent semiclassical approach / E. Chabanat, 
J. Meyer, K. Bencheikh, P. Quentin, J. Bartel // Phys. 
Lett. B. - 1994. - Vol. 325. - P.13.  

11. Strutinsky V.M. Shell effects in nuclear masses and 
deformation energies // Nucl. Phys. A. - 1967. - 
Vol. 95, No. 2. - P. 420 - 442; Shells in deformed nuclei 
// Nucl. Phys. A. - 1968. - Vol. 122, No. 1. - P. 1. 

12. Funny Hills: The shell-correction approach to nuclear 
shell effects and its application to the fission process / 
M. Brack, L. Damgard, A.S. Jensen., H.C. Pauli, V.M. 
Strutinsky, C.Y. Wong // Rev. Mod. Phys. - 1972. - 
Vol. 44. - P. 320.  

13. Kolomietz V.M., Magner A.G., Strutinsky V.M. Shell 
effects in nuclei at large angular momenta // Sov. J. 
Nucl. Phys. - 1979. - Vol. 29. - P. 758.  

14. Gutzwiller M. Chaos in Classical and Quantum 
Mechanics. - N.Y.: Springer-Verlag, 1990. - 432 p. 

15. Strutinsky V. M. Semi-classical theory of nuclear shell 
structure // Nucleonika. - 1975. - Vol. 20, No. 7 - 8. - 
P. 679; Strutinsky V.M., Magner A.G. Semi-classical 
theory of nuclear shell structure // Sov. Phys. Part. 
Nucl. - 1976. - Vol. 7. - P. 356.  

16. Richter K., Ulmo D., Jalabert R. A. Orbital magnetism 
in the ballistic regime: geometric effects // Phys. 
Rep. - 1996. - Vol. 276. - P. 1.  

17. Frauendorf S., Kolomietz V.M., Magner A.G., Sanzhur 
A.I. Supershell structure of magnetic susceptibility // 
Phys. Rev. B. - 1998. - Vol. 58, No. 9. - P. 5622.  

18. Gross shell structure at high spin in heavy nuclei / 
M.A. Deleplanque, S. Frauendorf, V.V. Pashkevich, 
S.Y. Chu, A. Unzhakova // Phys. Rev. C. - 2004. - 
Vol. 69. - P. 044309.  

19. Creagh S.C. Trace formula for broken symmetry // 
Ann. Phys. (N.Y.). - 1996. - Vol. 248. - P. 60.  

20. Magner A.G., Vydrug-Vlasenko S.M., Hofmann H. 
Gross-shell effects in nuclear response functions // 
Nucl. Phys. A. - 1991. - Vol. 524, No. 1. - P. 31.  

21. Gzhebinsky A.M., Magner A.G., Sitdikov A.S. 
Semiclassical inertia for nuclear collective rotation // 
Nucl. Phys. At. Energy. - 2007. - No. 1 (19). - P. 17.  

22. Hantmaher F.P. Theory of Matrixes. Vol. V. - 
Moscow: Nauka. - 1966.  

23. Smirnov V.I. Course of the High Mathematics. 
Vol. III, part 2, sect. IV. - Moscow: Nauka. - 1974.  

24. Magner A.G. Semi-classical analysis of the gross-shell 
structure in the deformed oscillator potential // Sov. J. 
Nucl. Phys. - 1978. - Vol. 28. - P. 764.  

25. Magner A.G., Gzhebinsky A.M., Fedotkin S.N. 
Semiclassical inertia of nuclear collective dynamics // 
Phys. Atom. Nucl. - 2007. - Vol. 70, No. 4. - P. 647; 
Shell-structure inertia for slow collective motion // 
Phys. Atom. Nucl. - 2007. - Vol. 70, No. 11. - P. 1859. 

26. Gzhebinsky A.M., Magner A.G., Fedotkin S.N. Low-
lying collective excitations of nuclei as a semiclassical 
response // Phys. Rev. C. - 2007. - Vol. 76. - 
P. 064315, 16 p. 

 
КВАЗІКЛАСИЧНА  ОБОЛОНКОВА  СТРУКТУРА  МОМЕНТУ  ІНЕРЦІЇ 

У  НАГРІТИХ  ФЕРМІ-СИСТЕМАХ 
 

О. Г. Магнер,  А. С. Сітдіков,  А. А. Хамзін,  Дж. Бартел,  А. М. Гжебінський 
 
Аналітично виведено момент інерції колективного обертання в рамках кренкінг-моделі у випадку 

гамільтоніана гармонічного осцилятора для будь-яких частот при скінчених температурах. За допомогою теорії 
періодичних орбіт отримано співвідношення квазікласичних оболонкових поправок до моменту інерції та 
вільної енергії через оболонковий компонент твердотільного моменту інерції статистично рівноважного 
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обертання нагрітих Фермі-систем. Їх аналітична структура, виражена через екваторіальні і 3-мірні періодичні 
орбіти в аксіально-симетричному потенціалі гармонічного осцилятора, знаходиться в доброму узгодженні з 
квантовими результатами при критичних деформаціях і температурах. 

Ключові слова: модель примусового обертання ядер, момент інерції, теорія періодичних орбіт, оболонкові 
поправки до енергії, потенціал гармонічного осцилятора. 

 
КВАЗИКЛАССИЧЕСКАЯ  ОБОЛОЧЕЧНАЯ  СТРУКТУРА  МОМЕНТА  ИНЕРЦИИ 

В  НАГРЕТЫХ  ФЕРМИ-СИСТЕМАХ 
 

A. Г. Магнер,  А. С. Ситдиков,  А. А. Хамзин,  Дж. Бартел,  А. Н. Гжебинский 
 
Аналитически выведен момент инерции коллективного вращения в рамках кренкинг-модели в случае 

гамильтониана гармонического осциллятора для любых частот при конечных температурах. С помощью теории 
периодических орбит получено соотношение квазиклассических оболочечных поправок к моменту инерции и 
свободной энергии через оболочечный компонент твердотельного момента инерции статистически 
равновесного вращения нагретых Ферми-систем. Их аналитическая структура, выраженная через 
экваториальные и 3-мерные периодические орбиты в аксиально-симметрическом потенциале гармонического 
осциллятора, находится в хорошем согласии с квантовыми результатами при критических деформациях и 
температурах. 

Ключевые слова: модель принудительного вращения ядра, момент инерции, теория периодических орбит, 
оболочечные поправки к энергии, потенциал  гармонического осциллятора. 
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