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SEMICLASSICAL INERTIA FOR NUCLEAR COLLECTIVE ROTATION
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The collective rotation motion is described within the local approximation of the semiclassical Gutzwiller trajectory
approach to the response function theory through the cranking model. It is shown that the smooth local part of the
moment of inertia for the collective rotation of deformed nuclei around the axis, perpendicular to the symmetry axis of
the infinitely deep axially-symmetric square-well potential, is the rigid-body quantity. The “classical rotation” with the

rigid-body inertia moment was found in the spherical limit.

1. Introduction

Many interesting phenomena were discovered
from experimental data on the collective rotations in
nuclei [1-5]. The powerful and successful
theoretical tools for their study are suggested as the
cranking model [2, 3, 6 - 9] and the generalized
collective model of Bohr, Mottelson and Rainwater
[9 - 11]. The most of calculations have been done for
the collective rotations around the axis perpendicular
to the symmetry axis of nucleus. We point out also
another effect, considered in connection with the
nuclear rotation as the alignment of the individual
angular momenta of particles along the symmetry
axis of nucleus. Average of these individual
excitations can be referred to the so called “classical
nuclear rotation” [12] or the magnetic susceptibility
of spherical metallic clusters and circle quantum
dots [13]. Such phenomena were studied on basic of
the mean field approach within the shell correction
method [14, 15] with help of the semiclassical
Periodic Orbit Theory (POT) [16 - 19]. The POT
was successfully applied for explanation of the
nuclear shell structures in the deformed system,
which lead to the double-humped fission barrier (the
second potential well) [16, 19 - 21] as well as for
understanding the angular momentum alignment in
the yrast-line energies of spherical [12] and
deformed [22] nuclei. Another application of the
POT is related to the study of supershell effects in
the magnetic susceptibility of metallic clusters and
quantum dots [13].

In this paper we perform the semiclassical
cranking model calculations of the inertia moment
for the collective rotation of nuclei around the axis
perpendicular to the symmetry axis applying the
abovementioned ideas within the response function
formalism [10, 23] like for the transport coefficients
[24 - 26]. The Section 2 follows general points of
this approach. Section 3 deals with the semiclassical
derivations for the Green’s functions by means of
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the mean field approach through the infinitely deep
square-well potential with the deformed axially-
symmetric shapes. The semiclassical results for the
inertia moment were obtained in the local
approximation, similar to the Thomas - Fermi
approach [26 - 33], in Section 4. A short discussion
remarks are presented in Section 5.

2. Inertia moment for the collective rotation

Within the cranking model, the collective nuclear
rotation around the axis, X, perpendicular to the
symmetry axis of the axially symmetric mean field
potential, z, can formally considered by solving the

eigen-value problem for the single-particle
perturbed Hamiltonian, called usually as the
Routhian,

H,=H-al,, (D

where H is the unperturbed
Hamiltonian for a mean field, |

single-particle
. the angular
momentum projection to the axis X, @ the
Lagrangian multiplier frequency defined by the
constraint for quantum average,

(), =2 [ary (Dl (r) =1, @)

with a given angular momentum projection |, of
nucleus to the axis X, y”(r) are the eigenfuntions

and &” the eigenvalues of the Routhian I:|w Eq. (1).
Thus, we may formally consider the moment of the
inertia, @, , as the response of the quantum average,

0 <|x>w’ see Eq. (2), to the external cranking field,

—ol, , like a susceptibility, similar to the magnetic or
isolated susceptibilities [13, 23, 26, 34],

5(l,) =060, 3)
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where
4@
o -2[d
3 7[.[ en(e)x
xjdrljdrzlx, l,, ReG(r,,r,,)ImG(r,,1,,8),

Zl/ll (r)l//l(r (4)

i €& +il”

rl,r2,8

I"=+0 for the undamped motion, I, =1 (r,) is the

angular momentum projection of particle at the point
r, (v=12), n(e) the Fermi occupation numbers,

n(e)=1/{l+exp[(e-A)/T]}, A the
potential and T the temperature, 4~ &, =h’k2/2m),

chemical

& and k. are the Fermi energy and momentum,

respectively, m is the nucleon mass, see [3, 10].
Factor 2 takes into account the spin degeneracy.
Notice also, for convenience of the semiclassical

derivations, we included the %° appearing usually in
the cranking-model formulas into the angular

momentum squared factor, | . The eigenfunctions,
v, are defined by the
Hamiltonian, H_, at @ =0 within the lowest order

and eigenvalues, ¢,

of perturbation expansion in a small parameter,
hale. <<1. Substituting the second equation in
Eq. (4) into the first expression one obtains the well-

known cranking model result for the inertia moment,
see Refs. [3, 7, 10],

o -y LT

()

Here n,=n(g) are the Fermi

numbers for the single-particle state |i> with the

occupation

eigenfunction y; and eigenvalue ¢, of the Routhian,
H , at the lowest order of the perturbation

«

expansion above mentioned. |<i||X | j>| are the

matrix  elements of the angular-momentum
projection operator |, taken for the transition
between two such states |i> and | j > at the same
lowest order of perturbation expansion, @ =0.
Notice, it is possible to generalize this formalism
considering the excitations, denoted above by
variation symbol &, from the single-particle state of

the spectrum, &, , with a given @ by formal replace,
v v, with
eigenfunctions and eigenergies of the Routhian

& —é&’ and &” being the
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operator H  at finite @. Then, we may consider the

—oml,
Eq. (1). Repeating this procedure step by step we
may get the inertia moment, O, (@), as

susceptibility, 6<Ix>w /0w, at each finite @. The

Lagrangian multiplier @ in Eq.(4) or in the
cranking formula (5), modified in this way by w-
dependence, can be excluded from the consistency
condition (2) and thus, one obtains the non-adiabatic
angular-momentum dependence of the inertia
moment. However, in the following, for simplicity,
we shall neglect such non-adiabatic effects.

small perturbation of this Routhian, , like in

3. Semiclassical approach

The Green’s function G(r,,r,,&) can be found
with help of the semiclassical expansion derived by
Gutzwiller [16, 17] from the quantum path-integral
propagator,

r,8)=> G,(r,r,¢&) =

1/2

e TR bt

(6)

i iz

xexp| =S, (1,r,,&)—— U, |.

p 7 (1,15, 6) > H

The index a covers all classical paths inside the
potential well, which connect the two spatial points
r, and r, for a given energy ¢, and S, is the
classical action along such trajectory «. The u,
denotes the phase related to the Maslov index
through the number of all caustic and turning points
of the path o« [16]. The oscillation amplitude in
Eq. (6) depends on the classical trajectory stability
measured by the Jacobian, J_(p,,t ;r,, &), for
transformation from the initial momentum p, and
time t_ of the particle motion along the trajectory o
to its final coordinate r, and energy & . For closed
orbits ¢, r, > I, =r, a continuous axial symmetry
related to the existence of families of the periodic
orbits crossing a given point r in the spherical
potential well was taken into account [19] in the
semiclassical calculations of the oscillation
amplitudes in Eq. (6). For such a family, this
amplitude of the Green’s function term, G,, in
(16), (31) of
Ref. [19], is enhanced by factor proportional to 7"

with respect to that in the case of the isolated
trajectories given in the last equation of Eq. (6).

expansion (6) over «a, see Eqgs.
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Among all classical trajectories o, we may single
out «, which connects directly r, and r, without

reflections from the potential well edge. For the
Green’s function G, Eq. (6), one has then a

separation, G=G, +G which leads to the
corresponding splitting of the slightly averaged level
density trace, g.:(&)+0,.(€), into a smooth part of
g.(€), and its shell

osc ?

the Thomas - Fermi model,

structure correction, g (&) . We shall use more exact

smooth density ¢.:(¢) of the extended Thomas -
Fermi model, with including the surface and
curvature 7 corrections instead of the volume part
0. (€), see Refs. [16 - 19]. The POT sum over the
periodic orbits, g__(&), describes the shell effects in
the single-particle spectrum. The corresponding split
of the level density, g..(&,4)+9,. (&), into a

0sc

smooth Thomas - Fermi, g,.(&,4), and oscillating
(&,) with the fixed
angular momentum projection 4 to the symmetry
axis was suggested in [35] for the semiclassical study
of the yrast-line properties, in particular, the shell
effects in the inertia moment due to the alignment in
spherical nuclei.

For calculations of the semiclassical moment of

inertia, ©,, one can substitute the trajectory

periodic-orbit components ¢

osc

expansion of Green’s function (6) into Eq. (3) for
O, . Here, we have to deal with both closed (r, =r,)

and non-closed (r, #r,) trajectories «, in contrast

to the calculations of level density trace.

For the calculations of the moment of inertia, we
shall consider a simple mean field in terms of the
axially symmetric square-well potential with infinite
walls like spheroidal cavity, and need to study
separately the two different cases like in [26]:

(1) the nearly local
S, (r,ry,e)h=k.L, S1,

(it) non-local contributions, k L, >>1,

case,

where L, is the length of the trajectory «, for

instance, in spheroidal cavity, k; the Fermi

2meg /h.

In the case (i), after the Strutinsky averaging [14
- 16], the most important contribution is coming
from the trajectory, @ =a' = ¢, , with a short length,

L,,=s=r,—r |Slk. <<R, for

a 0

momentum in units of 7, k. =

large semi-

classical parameter, k-R>>1, where R is the size
of the nucleus. For simplicity of calculations of the
contributions (i), e =a'=¢,, into Eq. (3) for the

moment of inertia, @, , the variables {r,, r,} can be
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transformed to {r,s}, r=(r,+r,)/2, s=r,-r.
The Green’s function G,, from Eq. (6) in the new
variables T,s for small enough length S of the
trajectory ¢, S/R<<1, is reduced approximately to
a simple analytical form G, for free particle motion
m .
G,,(r,,r,,&) =G, (r,,r,,8) = gy exp(iks),
2me

k=T

s=|r, -,

(7

We are going to use this expression for the
Green’s function in the local approximation (i) in
order to derive the smooth moment of inertia Eq. (4).

4. The local moment of inertia

After the transformation of the integrals over r,
and r, in the term a =a'=¢, of Eq. (4) to the new
variables ¥ and s one can calculate analytically the
inertia moment, ©,, within the local (i) approxi-

mation (7), G, ,(r,r,,&)=G,(r,.r,,6)=G,(S,¢),

Ll =12,

x17°x2
4% —
e

sin 2kS)

jdgn(g)jdrjdsl2 (8)

234

For simplicity, as mentioned above, we neglected
the non-adiabatic effects related to the @ (or angular
moment, according to the constraint (2)) dependence
of the inertia moment.

As shown in Figure, for the integration over § in
the second line of Eq. (8) it is convenient to use the
local (r, = ;) spherical coordinate system with the
centre at the point r, *r =r and the polar axis z,
crossing the potential symmetry centre and the point
r, Figure. For this integration we use now the
explicit dependence of the classical single-particle
angular momentum projection |, (v=1,2) on the

spatial coordinates, r,, and momentum, p,, i.e. the
projection of the classical angular momentum

I, =r,xp, on the axis X. The explicit expression
for the angular momentum projection operator, |,
as applied specifically for the rotation of the axially-
symmetric potential well around the axis, X,

perpendicular to its symmetry axis, Z, is given by

Ii=rp*, ri=y’+7% 9)
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A short trajectory «, and the spherical coordinate
used for the
integrations. The circle orbit of particle in the plane Y, z

systems with polar axis’s z and z,

for the rotation around the axis x perpendicular to the
symmetry axis z is shown by dashed line; p is the

particle momentum tangent to this orbit in the same plane.

Therefore, the integrals
ds=s’dssinf,df.dp, can be taken analytically
within the limits in S from 0 to 2R(€) (R(0) is the
surface radius for a given angle & of the radius
vector r ), and in all angles, 6, from 0 to 7, and ¢,

over

fromOto2 7.

Applying the Strutinsky smoothing in spectrum
[14 - 16, 19] to Eq. (8) with Eq. (9) for the angular
momentum projection 1’

6= Wjden(s)p x

xfdf(y2+z2j<jds@>av (10)

and calculating the integral over s in the spherical
coordinate system shown in Figure, we note that the

average of sin’(2kR(#)) in spectrum, Kk , marked by
is 1/2. Here, A is the smooth Strutinsky

average of the occupation numbers [14]. By making
use also the expression for the averaged particle

<>y

density, equal approximately to the extended
Thomas - Fermi particle density,
- dp .
=2 n(e), 11

one finally arrives at the moment of inertia,

20

=mp[dr(y’ +7°), (12)
\

where the integral is taken over the volume of the

axially-symmetric cavity, V. Substituting the Fermi

occupation numbers f(g) into the particle density,

p Eq. (1D),
dependence of the inertia moment, @, Eq. (12), for

we may find the temperature

small enough temperature, T << ¢,

2
| (T
—_— dpn~ l+—|— |,
e _([ p-dp Prr { 3 (gFJ }

_ b
RY 2 A

p=

Prr

where p;; is the main (volume) term of particle

density of the extended Thomas - Fermi model.
Here, we integrated over modulus p of the particle

momentum p in the spherical coordinate system in

Eq. (11), &= p’/2m, by parts and transformed the

integration variable p to a new variable

E=(e—-A)/T . As usually, extending approximately
the low & -integration limit to —oo for T << A= ¢,

in Eq. (13), we used the Sommerfeld expansion of
the smooth relatively multiplier in front of the sharp
bell-like derivative, dn(¢)/d&, in small parameter

T/&p at the second order.

As expected, the expression (12) is general for
the rigid-body inertia moment [36] valid for a
statistically equilibrium rotation of any cavities with
axially-symmetric shapes of the potential surface
[37]. This general result is also in agreement with
obtained in [8] by direct applying numerically the
Strutinsky averaging procedure [14, 15] to the
cranking-model expression (5). In particular, for the
spheroidal cavity with axis’s, a=b, and C for its
arbitrarily deformed surface, one gets well-known
expression [36],

~ _47Z'm 2 _1 2 2
6,=—5 2 cpla’+c ]_gmA[a +c?),
(14)
A 4
p=—, V=—a’,
=V 3

where V is the volume of spheroid. For the case of
the spherical limit of the infinitely deep square-well
potential one naturally obtains the standard rigid-
body expression too [36],

%mARZ,

15 5 (15)
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where R is the radius of the spherical cavity,
equivalent to the spheroid, ), =@y =0,=6. For

simplicity, we neglect small temperature corrections
at the final results in (14), (15). This rigid-body
result for the inertia moment is also in agreement
with the semiclassical derivations for “classical
rotation” around the symmetry axis of spherical
nuclei in [12].

5. Discussion

We obtained the rigid-body inertia moment (12)
for the collective rotation of the axially-symmetric
nucleus in the mean-field approximation with the
corresponding shapes of the infinitely deep square-
well potentials around the axis perpendicular to the
symmetry axis, as expected for the statistically
equilibrium rotation of the Fermi gas incorporated
into the axially symmetric cavity [37]. This is in
agreement with many other results for the statistically
averaged inertia moment obtained within the cranking
model [2, 8, 12], as a good test for our more general
approach. The result (12) was derived in general case
for any deformations of axially-symmetric shapes of
the potential surface, in particular for the spheroid
cavity with arbitrary deformation, c/a, see Eq. (14).
It is interesting that in the spherical limit one has the
finite nonzero value (15), in contrast to pure quantum

approaches [2, 8]. Following Ref. [12], we may
consider that as the “classical rotation” which appears
after the statistical averaging in spectrum like the
Strutinsky averaging. Similarly, we may find
“classical rotation” of the axially-symmetric shapes of
the potential well around the symmetry axis,

0, = mﬁjdr (x*+Yy?), as averaging over many
\

individual angular momenta of particles in their
alignment along the symmetry axis.

The non-local contributions (ii) into the moment
of the inertia @, (3) can be obtained by substituting

the other oscillating components of Green’s
function, G, , of the Gutzwiller trajectory

expansion (6) related to the shell effects. In further
publications we are going to show that the shell
component of the moment of inertia can be obtained
in the analytical form through the periodic orbits by
calculating the integrals in Eq. (3) by the stationary
phase method.

We thank very much Profs. V. Pashkevich,
S. Frauendorf, H. Hofmann, F. Ivanyuk,
V. M. Kolomietz and K. Matsuyanagi for many
helpful discussions.
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KBA3IKJIACHUHWI MOMEHT THEPIIIT 111 ATEPHUX KOJJEKTUBHUX OGEPTAHD
O.TI'. Maruep, A. M. I'xebdincbkuii, A. C. CitaikoB

KonexktuBamMiI 00epTanbHUI pPyX OMHCYETHCS B JIOKAbHOMY HAaONIKEHHI KBa3iKJIIACHYHOTO TPAEKTOPHOTO MiAXOITy
I'yusiyutepa 1o Teopii (yHKIi# BiAryKy 3a IOIOMOTOK KpeHKiHr-momneni. OTpUMaHO TiajaKy JIOKaJbHY YacTHUHY
MOMEHTY iHepIil KOJEKTHBHUX 00OepTaHb e(OpMOBAaHUX SAEpP HABKOJIO OCi, MEPIEHIMKYISAPHOI 0 OCi cuMmerTpil
HECKIiHUEHHO TIIMOOKOI aKCialbHO-CUMETPUYHOI IMOTEHI[aNbHOI SIMH, y BUIJIAI MOMEHTY iHEpIii TBEpIOoro Tiia.
[TokazaHo iCHyBaHHS “KJIaCHYHOr0 00epTaHHs Mpu HAOJIMKEHHI 10 chepuuHoi GopMu sapa.

KBA3UKJIACCUYECKWI MOMEHT MHEPIIUU JJIS AEPHBIX KOJUVIEKTUBHBIX BPAIIIEHUI
A.T. Maruep, A. H. I''keOunckuii, A. C. Cutiukon

KosulekTHBHOE BpalaTeNIbHOE [BIJKCHHUE OIMKCHIBAETCS B JIOKAIBHOM MPHUOJIKCHUH KBa3HKIACCHYECKOTrO
TpaekTopHOro noaxoaa ['yusuiiepa kK Teopud (GyHKIHMU OTKJIMKA C MOMOIIbIO KPEHKUHT-Moenu. [lonydeH rimaakuii
KOMITOHEHT MOMEHTa UHEPLUH KOJJICKTUBHOTO BpallleHns1 1e()OPMUPOBAHHBIX SJiep BOKPYT OCH, EPIICHANKYISIPHOI K
OCH CUMMETPHH OECKOHEYHO IJIyOOKOW aKCHaJbHO-CUMMETPHYHOH IOTEHIMAIBHOM SIMBI, B BUAE MOMEHTa WHEPIUU
TBepaoro tena. [TokazaHo CyIecTBOBaHUE “KJIACCHYECKOTO BpallleHUs B mpejee K chepuieckoit popme sipa.
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