Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2025, volume 26, issue 4, pages 308-319.
Section: Nuclear Physics.
Received: 03.09.2025; Accepted: 26.11.2025; Published online: 29.12.2025.
PDF Full text (en)
https://doi.org/10.15407/jnpae2025.04.308

Nuclear structure and symmetry evolution in 190,19284Po: insights from IBM-1, VMI, and GVMI

F. R. Abbas*, A. K. Aobaid

Department of Physics, College of Education for Pure Science, University of Anbar, Ramadi, Iraq

*Corresponding author. E-mail address: far23u3009@uoanbar.edu.iq

Abstract: In this study, three nuclear models - the Interacting Boson Model-1 (IBM-1), the Variable Moment of Inertia (VMI), and its generalized form (Generalized Variable Moment of Inertia - GVMI) - were employed to investigate the low-lying collective states of the even-even polonium isotopes 190Po and 192Po. The models were used to compute positive-parity energy levels E(L), transition energies Eγ, reduced electric quadrupole transition probabilities B(E2), and electric quadrupole moments QL, based on available experimental data and ideal level schemes. Characteristic energy ratios E(4+1)/E(2+1), E(6+1)/E(2+1), and E(8+1)/E(2+1) were evaluated to assess the dynamical symmetries of the nuclei and compared with theoretical limits of the SU(5), SU(3), and O(6) symmetry groups. Results indicate that 190Po exhibits dominant O(6) γ-soft symmetry, while 192Po displays transitional behavior between SU(5) and O(6). Comparative analysis revealed good agreement between experimental data and theoretical predictions, particularly from IBM-1 and GVMI, confirming their reliability in modeling structural evolution in medium-heavy nuclei. In addition, theoretical energy levels were extrapolated for high-spin states not yet experimentally observed. For 190Po, IBM-1 predicts the 16+1 state at 4.06 MeV, the 18+1 state at 4.96 MeV, and the 20+1 state at 6.01 MeV. For 192Po, the predicted levels include 12+1 at 3.12 MeV, 14+1 at 4.11 MeV, and 16+1 at 5.20 MeV. These predictions extend the known spectra up to spin 20+ and offer a theoretical framework for future experimental validation. These findings contribute to a deeper understanding of collective excitations and symmetry dynamics in the polonium isotopic chain.

Keywords: IBM-1, VMI, GVMI, 190Po, 192Po, energy levels, dynamical symmetry.

References:

1. K. Heyde, J.L. Wood. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83(4) (2011) 1467. https://doi.org/10.1103/RevModPhys.83.1467

2. A. Oros et al. Shape coexistence in the light Po isotopes. Nucl. Phys. A 645 (1999) 107. https://doi.org/10.1016/S0375-9474(98)00602-2

3. P.E. Garrett, M. Zielińska, E. Clément. An experimental view on shape coexistence in nuclei. Prog. Part. Nucl. Phys. 124 (2022) 103931. https://doi.org/10.1016/j.ppnp.2021.103931

4. U.S. Ghosh et al. Systematic study of potential energy surfaces of odd mass Astatine isotopes. Proc. of the DAE Symp. on Nucl. Phys. 62 (2017) 188. https://sympnp.org/proceedings/62/A66.pdf?utm_source=chatgpt.com

5. W. Younes, J.A. Cizewski. Systematical behavior of even-A polonium isotopes. Phys. Rev. C 55(3) (1997) 1218. https://doi.org/10.1103/PhysRevC.55.1218

6. A.N. Andreyev et al. A triplet of differently shaped spin-zero states in the atomic nucleus 186Pb. Nature 405 (2000) 430. https://doi.org/10.1038/35013012

7. T.E. Cocolios et al. Early onset of ground state deformation in neutron deficient polonium isotopes. Phys. Rev. Lett. 106(5) (2010) 52503. https://doi.org/10.1103/PhysRevLett.106.052503

8. V. Prassa, K.E. Karakatsanis. Microscopic description of shape transitions and shape coexistence in Hg isotopes. Bulg. J. Phys. 48 (2021) 495. https://doi.org/10.55318/bgjp.2021.48.5-6.495

9. R.F. Casten. Nuclear Structure from a Simple Perspective. 2nd edn. (Oxford, Oxford University Press, 2001) 478 p. https://doi.org/10.1093/acprof:oso/9780198507246.001.0001

10. N. Kesteloot et al. Deformation and mixing of coexisting shapes in neutron-deficient polonium isotopes. Phys. Rev. C 92 (2015) 054301. https://doi.org/10.1103/PhysRevC.92.054301

11. B. Rossé et al. Structure of polonium isotopes at high spin with Rfd + Euroball IV. Int. J. Mod. Phys. E 13 (2004) 47. https://doi.org/10.1142/S0218301304001710

12. Y.Y. Kassim et al. Evaluating the nuclear properties of 120-130Xe isotopes. Momento 70 (2025) 16. https://doi.org/10.15446/mo.n70.114834

13. R. Lică et al. (IDS Collaboration). Revealing the nature of yrast states in neutron-rich polonium isotopes. Phys. Rev. Lett. 134(5) (2025) 052502. https://doi.org/10.1103/PhysRevLett.134.052502

14. F. Iachello, A. Arima. The Interacting Boson Model. Cambridge Monographs on Mathematical Physics (Cambridge, Cambridge University Press, 2011) 264 p. https://doi.org/10.1017/CBO9780511895517

15. A. Arima, F. Iachello. The interacting boson model. Annu. Rev. Nucl. Part. Sci. 31 (1981) 75. https://doi.org/10.1146/annurev.ns.31.120181.000451

16. A.M. Khalaf, A.M. Ismail, A.A. Zaki. Nuclear shape transition between the limiting symmetries U(5) and SU(3) of interacting boson model applied to double even Hafnium isotopic chain. Nucl. Phys. A 996 (2020) 121704. https://doi.org/10.1016/j.nuclphysa.2020.121704

17. M. Abdel-Mageed. Investigation of the nuclear structure of even-even 96-108Mo isotopes. Arab J. Nucl. Sci. Appl. 57(4) (2024) 9. https://doi.org/10.21608/ajnsa.2024.298655.1825

18. D. Bonatsos, A. Klein. Energies of ground-state bands of even nuclei from generalized variable moment of inertia models. At. Data Nucl. Data Tables 30(1) (1984) 27. https://doi.org/10.1016/0092-640X(84)90007-X

19. D. Bonatsos, A. Klein. Generalized phenomenological models of the yrast band. Phys. Rev. C 29(5) (1984) 1879. https://doi.org/10.1103/PhysRevC.29.1879

20. A.K. Aobaid. Theoretical description of even-even platinum Pt-186 nucleus using IBM and (VMI) models. East Eur. J. Phys. 2 (2023) 69. https://doi.org/10.26565/2312-4334-2023-2-04

21. C. Fransen et al. Systematics of low-lying electric dipole excitations in the A ∼ 130-200 mass region. Phys. Rev. C 57 (1998) 129. https://doi.org/10.1103/PhysRevC.57.129

22. V. Devi, J.S. Matharu. Spherical to axially symmetric shape transition SU(5) → SU(3) in the frame work of interacting boson model IBM. Proc. of the DAE Symp. on Nucl. Phys. 58 (2013) 164. https://inspirehep.net/files/81dc1542696a8a2ed7fbe5fcdbe60e5c

23. D. Bucurescu et al. Detailed spectroscopy of 113Cd through transfer reactions. Nucl. Phys. A 756(1) (2005) 54. https://doi.org/10.1016/j.nuclphysa.2005.03.012

24. G. Kyrchev. On the equivalence of the quadrupole phonon model and the interacting boson model. Nucl. Phys. A 349(3-4) (1980) 416. https://doi.org/10.1016/0375-9474(80)90297-3

25. P. Vasileiou, D. Bonatsos, T.J. Mertzimekis. Mean-field-derived IBM-1 Hamiltonian with intrinsic triaxial deformation. Phys. Rev. C 110(1) (2024) 014313. https://doi.org/10.1103/PhysRevC.110.014313

26. N. Turkan, T. Bascetin, I. Inci. Quadrupole moments of some nuclei around the mass of A ∼ 80: 76,78,80,82,84Kr and neighboring Se isotopes. Phys. At. Nucl. 72(6) (2009) 960. https://doi.org/10.1134/S1063778809060088

27. I.A. Hamdi, A.K. Aobaid. Description of nuclear properties for (7032Ge38) nucleus in framework of (IBM-1) and (VMI) models. AIP Conf. Proc. 3018 (2023) 020050. https://doi.org/10.1063/5.0171588

28. K.M.A. AlEsawi, A.K. Aobaid. Studying the electric quadruple moments and electric transitions probability of Nd(A = 146-154) isotopes. AIP Conf. Proc. 2394 (2022) 090026. https://doi.org/10.1063/5.0121347

29. S.H. Al-Fahdawi, A.K. Aobaid. Studying the nuclear structure of the (17270Yb102) deformed nucleus using (IBM-1) and (GVMI) models. IOP Conf. Ser.: Mater. Sci. Eng. 1095 (2021) 012012. https://doi.org/10.1088/1757-899X/1095/1/012012

30. J.B. Gupta, A.K. Kavathekar, Y.P. Sabharwal. Reexamination of the variable moment of inertia nuclear softness model. Phys. Rev. C 56 (1997) 3417. https://doi.org/10.1103/PhysRevC.56.3417

31. I.A. Hamdi, A.K. Aobaid. Describe of nuclear structure for germanium (6632Ge34) nucleus under frame (IBM 1, GVMI and VMI) models. East Eur. J. Phys. 2 (2023) 85. https://doi.org/10.26565/2312-4334-2023-2-06

32. Plato Integrated Development Environment (IDE) for FTN95 Fortran Compiler. Silverfrost Ltd., Manchester, United Kingdom (2024). https://www.silverfrost.com/16/ftn95/plato.aspx?utm_source=chatgpt.com

33. J.S. Batra, R.K. Gupta. Reformulation of the variable moment of inertia model in terms of nuclear softness. Phys. Rev. C 43(4) (1991) 1725. https://doi.org/10.1103/PhysRevC.43.1725

34. B. Singh, J. Chen. Nuclear Data Sheets for A = 190. Nucl. Data Sheets 169 (2020) 1. https://doi.org/10.1016/j.nds.2020.10.001

35. C.M. Baglin. Nuclear Data Sheets for A = 192. Nucl. Data Sheets 113(8-9) (2012) 1871. https://doi.org/10.1016/j.nds.2012.08.001

36. S.E.A. Al-Slami et al. Calculation of energy levels and reduced transition probabilities B(E2) for 130Ba isotope using IBM-1. J. Phys.: Conf. Ser. 1530 (2020) 012088. https://doi.org/10.1088/1742-6596/1530/1/012088