![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Proton electromagnetic form factor and radius extracted from elastic pp scattering at √s ≈ 7, 8, and 13 TeV using the Chou-Yang model
Mehak Kanwal1, Sarwat Zahra1,*, Samreen Zahra2
1 Department of Physics, Division of Science & Technology,
University of Education, Lahore, Pakistan
2 Mineral Processing Research Centre,
Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore, Pakistan
*Corresponding author. E-mail address:
sarwat.zahra@ue.edu.pk
Abstract: Chou-Yang model has been used to obtain the electromagnetic form factor and the root mean square (rms) radius of the proton, using experimental data for proton-proton elastic scattering at √s ≈ 7, 8, and 13 TeV. The differential cross-section data at low squared four-momentum transfer ∣t∣ is fitted to a single exponential function to extract the form factor at the aforementioned center of mass energies. Extracted electromagnetic form factors are used for the prediction of rms radius of the proton. A comparison of electromagnetic form factor and rms charge radius at the different centers of mass energies truly reflects the fact that our results agree well with the experiment and theory. Predicted values of rms radius of the proton confirm its energy-independent nature.
Keywords: Chou-Yang model, elastic scattering of protons, root mean square radius of the proton, the electromagnetic form factor of the proton.
References:1. L. Xia et al. Proton electromagnetic form factors in the time-like region through the scan technique. Symmetry 14 (2022) 231. https://doi.org/10.3390/sym14020231
2. A. Gasparian. The PRad experiment and the proton radius puzzle. EPJ Web of Conf. 73 (2014) 07006. https://doi.org/10.1051/epjconf/20147307006
3. R. Pohl et al. The size of the proton. Nature 466 (2010) 213. https://doi.org/10.1038/nature09250
4. A. Antognini et al. Proton structure from the measurement of 2S-2P transition frequencies of muonic hydrogen. Science 339 (2013) 417. https://doi.org/10.1126/science.1230016
5. J.C. Bernauer (The A1 Collaboration). High-precision determination of the electric and magnetic form factors of the proton. AIP Conf. Proc. 1388 (2011) 128. https://doi.org/10.1063/1.3647361
6. C.G. Parthey et al. Improved measurement of the hydrogen 1S-2S transition frequency. Phys. Rev. Lett. 107 (2011) 203001. https://doi.org/10.1103/PhysRevLett.107.203001
7. M. Meziane (PRad Collaboration). High precision measurement of the proton charge radius: The PRad experiment. AIP Conf. Proc. 1653 (2013) 183. https://doi.org/10.1063/1.4829405
8. O.V. Selyugin, Models of the hadron structure and data of the TOTEM collaboration. arXiv:1310.2119 (2013). https://doi.org/10.48550/arXiv.1310.2119
9. V.A. Khoze, A.D. Martin, M.G. Ryskin. Elastic proton-proton scattering at 13 TeV. Phys. Rev. D 97 (2018) 034019. https://doi.org/10.1103/PhysRevD.97.034019
10. G. Antchev et al. (The TOTEM Collaboration). Evidence for non-exponential elastic proton-proton differential cross-section at low ∣t∣ and √s = 8 TeV by TOTEM. Nucl. Phys. B 899 (2015) 527. https://doi.org/10.1016/j.nuclphysb.2015.08.010
11. S. Zahra, B. Shafaq. Prediction of rms charge radius of proton using proton-proton elastic scattering data at √s = 2.76 TeV. Revista Mexicana de Fisica 67 (2021) 491. https://doi.org/10.31349/RevMexFisE.67.491
12. V. Franco. Proton-proton scattering, the Chou-Yang model, and proton form factors. Phys. Rev. D 11 (1975) 1837. https://doi.org/10.1103/PhysRevD.11.1837
13. P.K. Chatley, C.P. Singh, M.P. Khanna. Charge radii of proton and M1 radiative transitions of hadrons in a bag model with variable bag pressure. Phys. Rev. D 29 (1984) 96. https://doi.org/10.1103/PhysRevD.29.96
14. S.G. Fedosin. The radius of the proton in the self-consistent model. Hadronic Journal 35 (2012) 349. http://dx.doi.org/10.5281/zenodo.889451
15. S. Zahra et al. Form factor and rms radius of proton predicted using differential cross-section data of pp− elastic scattering at √s ≈ 31, 53, 62 and 1960 GeV. Phys. At. Nuclei 85 (2022) 139. https://doi.org/10.1134/S1063778822010161
16. S. Zahra, H. Rashid. Predictions of the Chou-Yang model for p-p scattering at √s = 8 TeV. Chinese Phys. Lett. 36 (2019) 061201. https://doi.org/10.1088/0256-307X/36/6/061201
17. S.Y. Lo ed. Geometrical Pictures in Hadronic Collisions: A Reprint Volume. 2nd edn. Vol. 1. (Singapore: World Scientific, 1987) 397 p. Google book
18. T.T. Chou, C.N. Yang. Model of elastic high-energy scattering. Phys. Rev. 170 (1968) 1591. https://doi.org/10.1103/PhysRev.170.1591
19. M. Saleem, M. Rafique, H. Rashid. The Chou-Yang model, lattice quantum chromodynamics and hyperon-proton elastic scattering. Pramana - J. Phys. 29 (1987) 469. https://doi.org/10.1007/BF02845787
20. J.C. Bernauer et al. Electric and magnetic form factors of the proton. Phys. Rev. C 90 (2014) 015206. https://doi.org/10.1103/PhysRevC.90.015206
21. S. Zahra et al. Geometrical models and hadronic radii. arXiv:1510.09146 (2015). https://doi.org/10.48550/arXiv.1510.09146
22. D.A. Sierra, J. Liao, D. Marfatia. Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data. JHEP 6 (2019) 141. https://doi.org/10.1007/JHEP06(2019)141
23. G. Antchev et al. (The TOTEM Collaboration). Measurement of proton-proton elastic scattering and total cross-section at √s = 7 TeV. Europhys. Lett. 101 (2013) 21002. https://doi.org/10.1209/0295-5075/101/21002
24. G. Antchev et al. (The TOTEM Collaboration). Characterisation of the dip-bump structure observed in proton-proton elastic scattering at √s = 8 TeV. arXiv:2111.11991 (2021). https://doi.org/10.48550/arXiv.2111.11991
25. G. Antchev et al. (The TOTEM Collaboration). Elastic differential cross-section measurement at √s = 13 TeV by TOTEM. Eur. Phys. J. C 79 (2019) 861. https://doi.org/10.1140/epjc/s10052-019-7346-7
26. G. Antchev et al. (The TOTEM Collaboration). Proton-proton elastic scattering at the LHC energy of √s = 7 TeV. Europhys. Lett. 95 (2011) 41001. https://doi.org/10.1209/0295-5075/95/41001
27. M. Kamran, I.B. Qureshi. The Chou-Yang model and Ξ- p ⟶ Ξ- p at high energies. Int. J. Mod. Phys. A 2 (1987) 217. https://doi.org/10.1142/S0217751X87000089
28. M. Kamran, I.E. Qureshi. The Chou-Yang model and π-p elastic scattering at 200 GeVc. Phys. Lett. B 173(1986) 205. https://doi.org/10.1016/0370-2693(86)90247-9
29. I. Sick. On the rms-radius of the proton. Phys. Lett. B 576 (2003) 62. https://doi.org/10.1016/j.physletb.2003.09.092
30. G. Lee, J.R. Arrington, R.J. Hill. Extraction of the proton radius from electron-proton scattering data. Phys. Rev. D 92 (2015) 013013. https://doi.org/10.1103/PhysRevD.92.013013