ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
A theoretical study of even-even 162-17870Yb isotopes using interacting vector boson model
D. M. Nasef*, E. T. Ellafi, S. M. El-Kadi
Department of Physics, Faculty of Science,
University of Tripoli,
Tripoli, Libya
*Corresponding author. E-mail address:
delenda_nasef@yahoo.com
Abstract: This theoretical study investigates the properties of even-even 162-17870Yb isotopes using the interacting vector boson model (IVBM). Our study focuses on the ground state band and negative parity band energy-level patterns, which provide insights into the shapes and symmetries of these nuclei. Furthermore, we investigate the collective properties of these isotopes, such as rotational and vibrational motion, as well as their interplay. The results of our theoretical analysis shed light on the structural evolution of ytterbium isotopes with increasing neutron numbers. The comparison of our theoretical predictions with experimental data will provide valuable insights into the nuclear structure of these isotopes and help validate the IVBM model's effectiveness in describing collective phenomena. This theoretical study employs the IVBM to investigate the dynamic symmetry of even-even 162-17870Yb isotopes. By conducting tests such as the ratio, backbending, and staggering analyses, we aim to determine the underlying symmetries governing the behavior of these isotopes. These results indicate that 16270Yb possess O(6) symmetry, 164-16670Yb have transition O(6) - SU(3) symmetry, and 168-17870Yb possess SU(3) symmetry. The study's outcomes show that the IVBM is dependable and useful for nuclear physics research because it aligns well with the corresponding experimental data.
Keywords: backbending, dynamic symmetry, midshell, nuclear model, ratio test, staggering.
References:1. G. Brunet et al. Exploring the dual functionality of an ytterbium complex for luminescence thermometry and slow magnetic relaxation. Chem. Sci. 10 (2019) 6799. https://doi.org/10.1039/C9SC00343F
2. M.T. McCulloch, K.J.R. Rosman, J.R. De Laeter. The isotopic and elemental abundance of ytterbium in meteorites and terrestrial samples. Geochimica et Cosmochimica Acta 41 (1977) 1703. https://doi.org/10.1016/0016-7037(77)90202-2
3. K.J.R. Rosman, P.D.P. Taylor. Table of isotopic masses and natural abundances. Pure Appl. Chem. 71 (1999) 1593. https://doi.org/10.1351/pac199971081593
4. A. Georgieva, P. Raychev, R. Roussev. Interacting two-vector-boson model of collective motions in nuclei. J. Phys. G: Nucl. Phys. 8 (1982) 1377. https://doi.org/10.1088/0305-4616/8/10/008
5. A. Arima, M. Harvey, K. Shimizu. Pseudo LS coupling and pseudo SU3 coupling schemes. Phys. Lett. B 30(8) (1969) 517. https://doi.org/10.1016/0370-2693(69)90443-2
6. A.I. Georgieva et al. Description of mixed-mode dynamics within the symplectic extension of the Interacting Vector Boson Model. Phys. Part. Nuclei 40 (2009) 461. https://doi.org/10.1134/S1063779609040029
7. K. Nomura. Interacting Boson Model from Energy Density Functionals (Tokyo, Springer Tokyo, 2013) 188 p. https://doi.org/10.1007/978-4-431-54234-6
8. R.M. Asherova et al. Interacting vector boson model and other versions of interacting boson approximations. J. Phys. G.: Nucl. Part. Phys. 19 (1993) 1887. https://doi.org/10.1088/0954-3899/19/11/016
9. H.G. Ganev. Microscopic shell-model description of irrotational-flow dynamics in 102Pd. Chinese Phys. C 48(1) (2024) 014102. https://doi.org/10.1088/1674-1137/ad021e
10. S.S. Hummadi et al. Calculate energy levels, energy ratios and electric quadrupole transition probability B(E2), of the even-even Yb-164 isotopes using IBM 1. Al-Mustansiriyah J. Sci. 31(1) (2020) 71. https://doi.org/10.23851/mjs.v31i1.606
11. H.S. El-Gendy. Nuclear structure of even-even ytterbium isotopes 166-176Yb. Nucl. Phys. A 1001 (2020) 121883. https://doi.org/10.1016/j.nuclphysa.2020.121883
12. A.M. Khalaf. Investigation of energy staggering effects in thorium isotopes in framework of interacting vector boson model. Nucl. Phys. A 988 (2019) 1. https://doi.org/10.1016/j.nuclphysa.2019.05.007
13. H. Ganev, V.P. Garistov, A.I. Georgieva. Description of the ground and octupole bands in the symplectic extension of the interacting vector boson model. Phys. Rev. C 69 (2004) 014305. https://doi.org/10.1103/PhysRevC.69.014305
14. H.H. Kassim et al. Nuclear structure and energy levels of 158Er, 160Yb and 162Hf isotones. IOP Conf. Ser.: Mater. Sci. Eng. 928 (2020) 072064. https://doi.org/10.1088/1757-899X/928/7/072064
15. A.M. Ali, Y.Y. Kassim, M.M. Yosuf. Study of nuclear structure of even-even Dy isotopes. J. Edu. and Sci. 30 (2021) 94. http://dx.doi.org/10.33899/edusj.2021.129809.1151
16. D.M. Nasef et al. The study of some nuclear properties of even-even 114-120Cd isotopes using interacting boson model-1. The 4th Int. Conf. of Sc. and Tech. 20(4) (2021) 51. https://www.doi.org/10.51984/jopas.v20i4.1672
17. P.H. Regan et al. Signature for vibrational to rotational evolution along the Yrast line. Phys. Rev. Lett. 90 (2003) 152502. https://doi.org/10.1103/PhysRevLett.90.152502
18. N.S. Shaftry et al. Study of some properties of even-even 162-156Er isotopes using interaction boson model-2 (IBM 2). The Libyan Journal of Science 24 (2021) 89. https://uot.edu.ly/journals/index.php/ljs/article/view/98/38
19. M.A. Al-Jubbori et al. Critical point of the 152Sm, 154Gd, and 156Dy isotones. Phys. Atom. Nuclei 82 (2019) 201. https://doi.org/10.1134/S1063778819030049
20. D. Bonatsos et al. ΔI = 1 staggering in octupole bands of light actinides: “Beat” patterns. Phys. Rev. C 62 (2000) 024301. https://doi.org/10.1103/PhysRevC.62.024301
21. I. Hossain et al. Nuclear gamma-soft character in 128Ba. Eur. J. Appl. Phys. 3 (2021) 54. https://doi.org/10.24018/ejphysics.2021.3.3.54
22. M.A. Al-Jubbori. Investigation of energy levels and electromagnetic transitions for a Yb-Pt nuclei with N = 108 using IBM, IVBM, and BMM. Ukr. J. Phys. 62 (2017) 936. https://doi.org/10.15407/ujpe62.11.0936
23. I. Mamdouh, M. Al-Jubbori. The rotational-vibrational properties of 178-188Os isotopes. Indian J. Phys. 89 (2015) 1085. https://doi.org/10.1007/s12648-015-0679-7