ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
The quartic anharmonic oscillator - an oscillator-basis expansion approach. I. Energy levels study and calculation
V. A. Babenko*, A. V. Nesterov
Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
*Corresponding author. E-mail address:
pet2@ukr.net
Abstract: For the quantum quartic anharmonic oscillator with the Hamiltonian H=0.5(p2+x2)+λx4 which is one of the classic traditional quantum-mechanical and quantum-field-theory models, its main physical characteristics and properties are thoroughly studied and calculated based on the system's wave function expansion in a complete set of the harmonic oscillator eigenfunctions, i.e., in the basis of eigenfunctions {φ(0)n} of the unperturbed Hamiltonian H=0.5(p2+x2). Very good convergence of the calculated energy levels of the anharmonic oscillator is demonstrated with respect to the number of basis functions included in the expansion, across a wide range of variation of the parameter λ. Thus, we have computed the energies of the ground and the first six excited states of the system for an exceptionally wide range of the oscillator coupling constant λ. In general, the proposed method provides a very good and accurate way to calculate all system characteristics.
Keywords: anharmonic oscillator, oscillator basis, quantum field theory.
References:1. C.M. Bender, T.T. Wu. Anharmonic oscillator. Phys. Rev. 184 (1969) 1231. https://doi.org/10.1103/PhysRev.184.1231
2. F.T. Hioe, D. MacMillen, E.W. Montroll. Quantum theory of anharmonic oscillators. Phys. Rep. 43 (1978) 305. https://doi.org/10.1016/0370-1573(78)90097-2
3. D.I. Kazakov, D.V. Shirkov. Asymptotic series of quantum field theory and their summation. Fortschr. Phys. 28 (1980) 465. https://doi.org/10.1002/prop.19800280803
4. B. Simon. Large orders and summability of eigenvalue perturbation theory: A mathematical overview. Int. J. Quant. Chem. 21 (1982) 3. https://doi.org/10.1002/qua.560210103
5. C. Itzykson, J.-B. Zuber. Quantum Field Theory (New York: McGraw-Hill, 1980) 705 p. Google books
6. G.A. Arteca, F.M. Fernández, E.A. Castro. Large Order Perturbation Theory and Summation Methods in Quantum Mechanics (Berlin: Springer-Verlag, 1990) 644 p. https://doi.org/10.1007/978-3-642-93469-8
7. J.C. Le Guillou, J. Zinn-Justin (Eds.). Large-Order Behaviour of Perturbation Theory (Amsterdam: Elsevier Science Publishers, 1990) 594 p. https://www.sciencedirect.com/bookseries/current-physics-sources-and-comments/vol/7/suppl/C
8. B. Simon. Fifty years of eigenvalue perturbation theory. Bull. Am. Math. Soc. 24 (1991) 303. https://doi.org/10.1090/S0273-0979-1991-16020-9
9. J. Zinn-Justin. Quantum Field Theory and Critical Phenomena (Oxford: Clarendon Press, 2002) 1054 p. https://doi.org/10.1093/acprof:oso/9780198509233.001.0001
10. A.V. Turbiner, J.C. del Valle Rosales. Quantum Anharmonic Oscillator (Singapore: World Scientific, 2023) 308 p. https://doi.org/10.1142/13252
11. G. Lé, J.M. Arias. Search for critical-point nuclei in terms of the sextic oscillator. Phys. Rev. C 81 (2010) 044304. https://doi.org/10.1103/PhysRevC.81.044304
12. A.A. Raduta, P. Buganu. Application of the sextic oscillator with a centrifugal barrier and the spheroidal equation for some X(5) candidate nuclei. J. Phys. G 40 (2013) 025108. https://doi.org/10.1088/0954-3899/40/2/025108
13. R. Budaca. Quartic oscillator potential in the γ-rigid regime of the collective geometrical model. Eur. Phys. J. A 50 (2014) 87. https://doi.org/10.1140/epja/i2014-14087-8
14. P. Buganu, R. Budaca. Analytical solution for the Davydov-Chaban Hamiltonian with a sextic potential for γ=30°. Phys. Rev. C 91 (2015) 014306. https://doi.org/10.1103/PhysRevC.91.014306
15. M.M. Hammad et al. Critical potentials and fluctuations phenomena with quartic, sextic, and octic anharmonic oscillator potentials. Nucl. Phys. A 1004 (2020) 122036. https://doi.org/10.1016/j.nuclphysa.2020.122036
16. A.S. Davydov, A.A. Chaban. Rotation-vibration interaction in non-axial even nuclei. Nucl. Phys. 20 (1960) 499. https://doi.org/10.1016/0029-5582(60)90191-7
17. J.P. Davidson. Rotations and vibrations in deformed nuclei. Rev. Mod. Phys. 37 (1965) 105. https://doi.org/10.1103/RevModPhys.37.105
18. A. Bohr, B.R. Mottelson. Nuclear Structure. Vol. 2 (New York: W. A. Benjamin, 1975) 748 p. https://search.worldcat.org/title/230038905
19. J.J. Loeffel et al. Pade approximants and the anharmonic oscillator. Phys. Lett. B 30 (1969) 656. https://doi.org/10.1016/0370-2693(69)90087-2
20. B. Simon. Coupling constant analiticity for the anharmonic oscillator. Ann. Phys. 58 (1970) 76. https://doi.org/10.1016/0003-4916(70)90240-X
21. C.M. Bender, T.T. Wu. Large-order behavior of perturbation theory. Phys. Rev. Lett. 27 (1971) 461. https://doi.org/10.1103/PhysRevLett.27.461
22. C.M. Bender, T.T. Wu. Anharmonic oscillator. II. A study of perturbation theory in large order. Phys. Rev. D 7 (1973) 1620. https://doi.org/10.1103/PhysRevD.7.1620
23. S.N. Biswas et al. Eigenvalues of λx2m anharmonic oscillators. J. Math. Phys. 14 (1973) 1190. https://doi.org/10.1063/1.1666462
24. F.T. Hioe, E.W. Montroll. Quantum theory of anharmonic oscillators. J. Math. Phys. 16 (1975) 1945. https://doi.org/10.1063/1.522747
25. K. Banerjee. Accurate non-perturbative solution of eigenvalue problems with application to anharmonic oscillator. Lett. Math. Phys. 1 (1976) 323. https://doi.org/10.1007/BF00398488
26. A.V. Turbiner, A.G. Ushveridze. Anharmonic oscillator: Constructing the strong coupling expansions. J. Math. Phys. 29 (1988) 2053. https://doi.org/10.1063/1.528187
27. F. Vinette, J. Čižek. Upper and lower bounds of the ground state energy of anharmonic oscillators using renormalized inner projection. J. Math. Phys. 32 (1991) 3392. https://doi.org/10.1063/1.529452
28. E.J. Weniger, J. Čižek, F. Vinette. Very accurate summation for the infinite coupling limit of the perturbation series expansions of anharmonic oscillators. Phys. Lett. A 156 (1991) 169. https://doi.org/10.1016/0375-9601(91)90931-W
29. E.J. Weniger, J. Čižek, F. Vinette. The summation of the ordinary and renormalized perturbation series for the ground state energy of the quartic, sextic, and octic anharmonic oscillators using nonlinear sequence transformations. J. Math. Phys. 34 (1993) 571. https://doi.org/10.1063/1.530262
30. F.M. Fernández, R. Guardiola. Accurate eigenvalues and eigenfunctions for quantum-mechanical anharmonic oscillators. J. Phys. A 26 (1993) 7169. https://doi.org/10.1088/0305-4470/26/23/051
31. E.J. Weniger. A convergent renormalized strong coupling perturbation expansion for the ground state energy of the quartic, sextic, and octic anharmonic oscillator. Ann. Phys. 246 (1996) 133. https://doi.org/10.1006/aphy.1996.0023
32. F.M. Ferná, R. Guardiola. The strong coupling expansion for anharmonic oscillators. J. Phys. A 30 (1997) 7187. https://doi.org/10.1088/0305-4470/30/20/019
33. A.V. Turbiner. Anharmonic oscillator and double well potential: Approximating eigenfunctions. Lett. Math. Phys. 74 (2005) 169. https://doi.org/10.1007/s11005-005-0012-z
34. A. Banerjee. A perturbative treatment of a generalized PT-symmetric quartic anharmonic oscillator. Mod. Phys. Lett. A 20 (2005) 3013. https://doi.org/10.1142/S0217732305018475
35. E.Z. Liverts, V.B. Mandelzweig, F. Tabakin. Analytic calculation of energies and wave functions of the quartic and pure quartic oscillators. J. Math. Phys. 47 (2006) 062109. https://doi.org/10.1063/1.2209769
36. A.J. Sous. Solution for the eigenenergies of sextic anharmonic oscillator potential. Mod. Phys. Lett. A 21 (2006) 1675. https://doi.org/10.1142/S0217732306019918
37. H. Ciftci. Anharmonic oscillator energies by the asymptotic iteration method. Mod. Phys. Lett. A 23 (2008) 261. https://doi.org/10.1142/S0217732308024006
38. H. Ezawa, M. Saito, T. Nakamura. Notes on the Padé approximation for an anharmonic oscillator. J. Phys. Soc. Japan 83 (2014) 034003. https://doi.org/10.7566/JPSJ.83.034003
39. F.M. Fernández, J. Garcia. Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators. Acta Polytech. 57 (2017) 391. https://doi.org/10.14311/AP.2017.57.0391
40. T. Sulejmanpasic, M. Ünsal. Aspects of perturbation theory in quantum mechanics. Comp. Phys. Com. 228 (2018) 273. https://doi.org/10.1016/j.cpc.2017.11.018
41. H. Mutuk. Energy levels of one-dimensional anharmonic oscillator via neural networks. Mod. Phys. Lett. A 34 (2019) 1950088. https://doi.org/10.1142/S0217732319500883
42. J.C. del Valle, A.V. Turbiner. Radial anharmonic oscillator: Perturbation theory, new semiclassical expansion, approximating eigenfunctions. I. Int. J. Mod. Phys. A 34 (2019) 1950143. https://doi.org/10.1142/S0217751X19501434
43. J.C. del Valle, A.V. Turbiner. Radial anharmonic oscillator: Perturbation theory, new semiclassical expansion, approximating eigenfunctions. II. Int. J. Mod. Phys. A 35 (2020) 2050005. https://doi.org/10.1142/S0217751X20500050
44. P. Okun, K. Burke. Uncommonly accurate energies for the general quartic oscillator. Int. J. Quantum Chem. 121 (2021) e26554. https://doi.org/10.1002/qua.26554
45. A.V. Turbiner, J.C. del Valle. Comment on: Uncommonly accurate energies for the general quartic oscillator. Int. J. Quantum Chem. 121 (2021) e26766. https://doi.org/10.1002/qua.26766
46. A.V. Turbiner, J.C. del Valle. Anharmonic oscillator: a solution. J. Phys. A 54 (2021) 295204. https://doi.org/10.1088/1751-8121/ac0733
47. A.V. Turbiner, J.C. del Valle. From quartic anharmonic oscillator to double well potential. Acta Polytech. 62 (2022) 208. https://doi.org/10.14311/AP.2022.62.0208
48. V.A. Babenko, N.M. Petrov. On the quantum anharmonic oscillator and Padé approximations. Nucl. Phys. At. Energy 22 (2021) 127. (Ukr) https://doi.org/10.15407/jnpae2021.02.127
49. V.A. Babenko, N.M. Petrov. On the quartic anharmonic oscillator and the Padé-approximant averaging method. Mod. Phys. Lett. A 37 (2022) 2250172. https://doi.org/10.1142/S0217732322501723
50. V. Vasilevsky et al. Algebraic model for scattering in three-s-cluster systems. I. Phys. Rev. C 63 (2001) 034606. https://doi.org/10.1103/PhysRevC.63.034606
51. V. Vasilevsky et al. Algebraic model for scattering in three-s-cluster systems. II. Phys. Rev. C 63 (2001) 034607. https://doi.org/10.1103/PhysRevC.63.034607
52. F. Arickx et al. The modified J-matrix approach for cluster descriptions of light nuclei. In: The J-Matrix Method: Developments and Applications. A.D. Alhaidari et al. (Eds.) (Berlin: Springer, 2008) p. 269. https://doi.org/10.1007/978-1-4020-6073-1_13
53. A.V. Nesterov et al. Three-cluster description of properties of light neutron- and proton-rich nuclei in the framework of the algebraic version of the resonating group method. Phys. Part. Nucl. 41 (2010) 716. https://doi.org/10.1134/S1063779610050047
54. M. Moshinsky, Y.F. Smirnov. The Harmonic Oscillator in Modern Physics (Amsterdam: Harwood Academic Publishers, 1996) 414 p. Google books
55. N.W. Bazley, D.W. Fox. Lower bounds for eigenvalues of Schrödinger's equation. Phys. Rev. 124 (1961) 483. https://doi.org/10.1103/PhysRev.124.483
56. S.I. Chan, D. Stelman, L.E. Thompson. Quartic oscillator as a basis for energy level calculations of some anharmonic oscillators. J. Chem. Phys. 41 (1964) 2828. https://doi.org/10.1063/1.1726359
57. P.-F. Hsieh, Y. Sibuya. On the asymptotic integration of second order linear ordinary differential equations with polynomial coefficients. J. Math. Anal. Appl. 16 (1966) 84. https://doi.org/10.1016/0022-247X(66)90188-0
58. F.J. Dyson. Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85 (1952) 631. https://doi.org/10.1103/PhysRev.85.631
59. A.V. Turbiner. The eigenvalue spectrum in quantum mechanics and the nonlinearization procedure. Sov. Phys. Usp. 27 (1984) 668. https://doi.org/10.1070/PU1984v027n09ABEH004155
60. A.S. Davydov. Quantum Mechanics (Oxford: Pergamon Press, 1976) 636 p. Google books
61. I.O. Vakarchuk. Quantum Mechanics (Lviv: IFNU of Lviv, 2012) 872 p. (Ukr) http://ktf.franko.lviv.ua/books/QM4/index.html
62. R. McWeeny, C.A. Coulson. Quantum mechanics of the anharmonic oscillator. Math. Proc. Cambridge 44 (1948) 413. https://doi.org/10.1017/S0305004100024415
63. C. Schwartz. A study of some approximation schemes in quantum mechanics. Ann. Phys. 32 (1965) 277. https://doi.org/10.1016/0003-4916(65)90018-7