ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Isoscalar giant quadrupole resonance of even-even 112-124Sn isotopes using BCS-QRPA
A. H. Taqi*, W. A. Mansour
Department of Physics, College of Science, Kirkuk University, Kirkuk, Iraq
*Corresponding author. E-mail address:
alitaqi@uokirkuk.edu.iq
Abstract: Using self-consistent Bardeen - Cooper - Schriffer + Hartree - Fock and quasiparticle random phase approximation, the isoscalar giant quadrupole resonance in the isotopes of 112,114,116,118,120,122,124Sn has been studied in this work. Five sets of Skyrme-type interactions of different values of the nuclear matter incompressibility coefficient KNM and effective mass m*/m are used in the calculations. Additionally, the impact of different types of pairing forces (i.e., volume, surface, and mixed) is examined. Comparisons are made between the computed strength distributions, centroid energies Ecen, scaled energies Es, and constrained energies Econ of the isoscalar giant quadrupole resonance and the available experimental data. Analysis is done on the relationships between KNM and m*/m, and the estimated properties.
Keywords: strength distribution, Skyrme force, Hartree - Fock + Bardeen - Cooper - Schrieffer, quasiparticle random phase approximation.
References:1. P. Ring, P. Schuck. The Nuclear Many-Body Problem. 1st ed. (New York, Berlin, Springer-Verlag, 1980) 716 p. https://link.springer.com/book/9783540212065
2. J.-P. Blaizot, G. Ripka. Quantum Theory of Finite Systems (MIT Press Cambridge, 1986) 657 p. Google books
3. R. Pitthan, T. Walcher. Inelastic electron scattering in the giant resonance region of La, Ce and Pr. Phys. Lett. B 36 (1971) 563. https://doi.org/10.1016/0370-2693(71)90090-6
4. S. Fukuda, Y. Torizuka. Giant Multipole Resonances in 90Zr Observed by Inelastic Electron Scattering. Phys. Rev. Lett. 29 (1972) 1109. https://doi.org/10.1103/PhysRevLett.29.1109
5. M. Lewis, F. Bertrand. Evidence from inelastic proton scattering for a giant quadrupole vibration in spherical nuclei. Nucl. Phys. A 196 (1972) 337. https://doi.org/10.1016/0375-9474(72)90968-2
6. M.N. Harakeh, A. van der Woude. Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation (Oxford University Press, 2001) 638 p. https://doi.org/10.1093/oso/9780198517337.001.0001
7, N. Tsoneva, H. Lenske. Pygmy Quadrupole Resonance in skin nuclei. Phys. Lett. B 695 (2011) 174. https://doi.org/10.1016/j.physletb.2010.11.002
8. X. Roca-Maza et al. Low-lying dipole response: Isospin character and collectivity in 68Ni, 132Sn, and 208Pb. Phys. Rev. C 85 (2012) 024601. https://doi.org/10.1103/PhysRevC.85.024601
9. A. Bohr, B.R. Mottelson. Nuclear Structure. Vol. I: Single-Particle Motion; Vol. II: Nuclear Deformations (New York, Amsterdam: W. A. Benjamin, Inc., 1975). Google books
10. J.P. Blaizot. Nuclear compressibilities. Phys. Rep. 64 (1980) 171. https://doi.org/10.1016/0370-1573(80)90001-0
11. C. Mahaux et al. Dynamics of the shell model. Phys. Rep. 120 (1985) 1. https://doi.org/10.1016/0370-1573(85)90100-0
12. N.V. Giai. Self-Consistent Description of Nuclear Excitations. Prog. Theor. Phys. Supp. 74-75 (1983) 330. https://doi.org/10.1143/PTPS.74.330
13. D. Vretenar, T. Nikšić, P. Ring. A microscopic estimate of the nuclear matter compressibility and symmetry energy in relativistic mean-field models. Phys. Rev. C 68 (2003) 024310. https://doi.org/10.1103/PhysRevC.68.024310
14. I. Daoutidis. Relativistic Continuum Random Phase Approximation in Spherical Nuclei. PhD thesis (Technical University of Munich, 2009). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3c870301af94ada542a4718f3c64e149b2f8a799
15. A.H. Taqi, G.A. Mohammed. Isoscalar monopole response in the neutron-rich molybdenum isotopes using self-consistent QRPA, Nucl. Phys. At. Energy 24 (2023) 306. https://doi.org/10.15407/jnpae2023.04.306
16. D.J. Rowe. Nuclear Collective Motion: Models and Theory (London, Methuen, 1970) 340 p. Google books
17. G. Colò et al. Microscopic determination of the nuclear incompressibility within the nonrelativistic framework. Phys. Rev. C 70 (2004) 024307. https://doi.org/10.1103/PhysRevC.70.024307
18. S. Shlomo, V.M. Kolomietz, G. Colò. Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes. Eur. Phys. J. A 30 (2006) 23. https://doi.org/10.1140/epja/i2006-10100-3
19. G. Colò et al. Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program. Comp. Phys. Comm. 184 (2013) 142. https://doi.org/10.1016/j.cpc.2012.07.016
20. S. Péru, J.F. Berger, P.F. Bortignon. Giant resonances in exotic spherical nuclei within the RPA approach with the Gogny force. Eur. Phys. J. A 26 (2005) 25. https://doi.org/10.1140/epja/i2005-10149-4
21. T. Sil et al. Effects of self-consistency violation in Hartree-Fock RPA calculations for nuclear giant resonances revisited. Phys. Rev. C 73 (2006) 034316. https://doi.org/10.1103/PhysRevC.73.034316
22. H. Sagawa et al. Isospin dependence of incompressibility in relativistic and nonrelativistic mean field calculations. Phys. Rev. C 76 (2007) 034327. https://doi.org/10.1103/PhysRevC.76.034327
23. J. Piekarewicz. Why is the equation of state for tin so soft? Phys. Rev. C 76 (2007) 031301. https://doi.org/10.1103/PhysRevC.76.031301
24. U. Garg, G. Colò. The compression-mode giant resonances and nuclear incompressibility. Prog. Part. Nucl. Phys. 101 (2018) 55. https://doi.org/10.1016/j.ppnp.2018.03.001
25. Y.-W. Lui et al. Giant resonances in 112Sn and 124Sn: Isotopic dependence of monopole resonance energies. Phys. Rev. C 70 (2004) 014307. https://doi.org/10.1103/PhysRevC.70.014307
26. D.H. Youngblood et al. Isoscalar E0 - E3 strength in 116Sn, 144Sm, 154Sm, and 208Pb. Phys. Rev. C 69 (2004) 034315. https://doi.org/10.1103/PhysRevC.69.034315
27. T. Li et al. Isoscalar giant resonances in the Sn nuclei and implications for the asymmetry term in the nuclear-matter incompressibility. Phys. Rev. C 81 (2010) 034309. https://doi.org/10.1103/PhysRevC.81.034309
28. F. Tondeur et al. Static nuclear properties and the parametrisation of Skyrme forces. Nucl. Phys. A 420 (1984) 297. https://doi.org/10.1016/0375-9474(84)90444-5
29. A.M. Saruis. Self-consistent HF-RPA description of electron and photon nuclear reactions with Skyrme forces. Phys. Rep. 235 (1993) 57. https://doi.org/10.1016/0370-1573(93)90123-U
30. J. Rikovska Stone et al. Nuclear matter and neutron-star properties calculated with the Skyrme interaction. Phys. Rev. C 68 (2003) 034324. https://doi.org/10.1103/PhysRevC.68.034324
31. N. Van Giai, H. Sagawa. Spin-isospin and pairing properties of modified Skyrme interactions. Phys. Lett. B 106 (1981) 379. https://doi.org/10.1016/0370-2693(81)90646-8
32. B.A. Brown. New Skyrme interaction for normal and exotic nuclei. Phys. Rev. C 58 (1998) 220. https://doi.org/10.1103/PhysRevC.58.220
33. J.R. Stone, P.-G. Reinhard. The Skyrme interaction in finite nuclei and nuclear matter. Prog. Part. Nucl. Phys. 58 (2007) 587. https://doi.org/10.1016/j.ppnp.2006.07.001
34. A.H. Taqi, G.L. Alawi. Isoscalar giant resonance in 100,116,132Sn isotopes using Skyrme HF-RPA. Nucl. Phys. A 983 (2019) 103. https://doi.org/10.1016/j.nuclphysa.2019.01.001
35. A.H. Taqi, M.S. Ali. Self-consistent Hartree-Fock RPA calculations in 208Pb. Indian J. Phys. 92 (2017) 69. https://doi.org/10.1007/s12648-017-1073-4
36. A.H. Taqi, E.G. Khidher. Ground and transition properties of 40Ca and 48Ca nuclei. Nucl. Phys. At. Energy 19 (2018) 326. https://doi.org/10.15407/jnpae2018.04.326
37. Sh.H. Amin, A.A. Al-Rubaiee, A.H. Taqi. Effect of Incompressibility and Symmetry Energy Density on Charge Distribution and Radii of Closed-Shell Nuclei. Kirkuk Journal of Science 17 (2022) 17. https://doi.org/10.32894/kujss.2022.135889.1073
38. J. Kvasil et al. Deformation-induced splitting of the isoscalar E0 giant resonance: Skyrme random-phase-approximation analysis. Phys. Rev. C 94 (2016) 064302. https://doi.org/10.1103/PhysRevC.94.064302
39. K. Yoshida, T. Nakatsukasa. Shape evolution of giant resonances in Nd and Sm isotopes. Phys. Rev. C 88 (2013) 034309. https://doi.org/10.1103/PhysRevC.88.034309
40. S. Stringari. Sum rules for compression modes. Phys. Lett. B 108 (1982) 232. https://doi.org/10.1016/0370-2693(82)91182-0