ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Nuclear softness in the variable moment of inertia model and its application to superdeformed bands in the mass region A ≈ 60 - 90
K. A. Gado1,2,*
1 Department of Physics, Faculty of Science and Arts, Al-Mikhwah, Al-Baha University, Al-Baha, Saudi Arabia
2 Basic Sciences Department, Bilbeis Higher Institute for Engineering, Bilbeis, Sharqia, Egypt
*Corresponding author. E-mail address:
qjado76@gmail.com
Abstract: For superdeformed (SD) bands 58Ni (b1), 58Cu, 59Cu (b1), 61Zn, 62Zn, 65Zn, 68Zn, 84Zr, 86Zr (b1), 88Mo (b1, b2, b3) and 89Tc in the A ≈ 60 - 90 mass region, the nuclear softness (NS) parameter, σ, has been calculated using the VMINS3 model. The SD bands 58Ni (b1), 58Cu, 59Cu (b1), 62Zn, 65Zn, and 88Mo (b2, b3) have NS parameter values that are greater than those of the normal deformed bands, indicating smaller rigidity. The fluctuation of the NS parameter versus the gamma energy ratio, R, of SD bands in the A ≈ 60 - 90 mass region is one of the study's findings. The ratio of transition energies was used to calculate the band head spin, I0, by the Descartes method (the greatest technique to solve the quartic equation based on an auxiliary cubic equation) which was then confirmed by root mean square deviations. The estimated and observed transition energies are in good agreement.
Keywords: variable moment of inertia model, nuclear softness, spin assignment.
References:1. T. Bäck et al. Observation of superdeformed states in 88Mo. Eur. Phys. J. A 6 (1999) 391. https://doi.org/10.1007/s100500050361
2. F.S. Stephens. Spin alignment in superdeformed rotational bands. Nucl. Phys. A 520 (1990) c91. https://doi.org/10.1016/0375-9474(90)91136-F
3. J.A. Becker et al. Level spin and moments of inertia in superdeformed nuclei near A = 194. Nucl. Phys. A 520 (1990) c187. https://doi.org/10.1016/0375-9474(90)91146-I
4. C.S. Wu et al. Spin determination and calculation of nuclear superdeformed bands in A ~ 190 region. Phys. Rev. C 45 (1992) 261. https://doi.org/10.1103/PhysRevC.45.261
5. K.A. Gado. Macroscopic investigation of rotations for some deformed even-even nuclei. J. Radiat. Res. Appl. Sci. 13(1) (2020) 37. https://doi.org/10.1080/16878507.2019.1698132
6. M.A.J. Mariscotti, G. Scharff-Goldhaber, B. Buck. Phenomenological analysis of ground-state bands in even-even nuclei. Phys. Rev. 178 (1969) 1864. https://doi.org/10.1103/PhysRev.178.1864
7. A. Goel, U. Nair, A. Yadav. Band head spin assignment of Tl isotopes of superdeformed rotational bands. Cent. Eur. J. Phys. 12(9) (2014) 693. https://doi.org/10.2478/s11534-014-0499-y
8. J.B. Gupta, A.K. Kavathekar, Y.P. Sabharwal. Reexamination of the variable moment of inertia nuclear softness model. Phys. Rev. C 56 (1997) 3417. https://doi.org/10.1103/PhysRevC.56.3417
9. A. Fathi, P. Mobadersany, R. Fathi. A simple method to solve quartic equations. Australian Journal of Basic and Applied Sciences 6(6) (2012) 331. https://www.researchgate.net/publication/291873816_A_simple_method_to_solve_quartic_equations
10. A.S. Shalaby. Theoretical spin assignment and study of the A ∼ 100 - 140 superdeformed mass region by using ab formula. Int. J. Phys. Sci. 9(7) (2014) 154. http://dx.doi.org/10.5897/IJPS2014.4121
11. G. Scharff-Goldhaber, C.B. Dover, A.L. Goodman. The Variable Moment of Inertia (VMI) Model and Theories of Nuclear Collective Motion. Ann. Rev. Nucl. Sci. 26 (1976) 239. https://doi.org/10.1146/annurev.ns.26.120176.001323
12. A.S. Shalaby. Simple model calculations of spin and quantized alignment for the A ∼ 60 - 90 superdeformed mass region. Acta Phys. Hung. A 25 (2006) 117. https://doi.org/10.1556/APH.25.2006.1.11
13. K.A. Gado. Importation of band head spin for superdeformed bands in mass region A ∼ 60 - 90 using the variable moment of inertia model. Nucl. Phys. At. Energy 24 (2023) 336. https://doi.org/10.15407/jnpae2023.04.336
14. B. Singh, R. Zywina, R.B. Firestone. Table of superdeformed nuclear bands and fission isomers: Third Edition. Nucl. Data Sheets 97(2) (2002) 241. https://doi.org/10.1006/ndsh.2002.0018