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NUCLEAR SOFTNESS IN THE VARIABLE MOMENT OF INERTIA MODEL
AND ITS APPLICATION TO SUPERDEFORMED BANDS
IN THE MASS REGION A =60 - 90

For superdeformed (SD) bands %8Ni (b1), %8Cu, *°Cu (by), 8'Zn, 52Zn, %2Zn, %Zn, 8Zr, 8Zr (by), #Mo (b1, bz, bs) and
8Tc in the A = 60 - 90 mass region, the nuclear softness (NS) parameter, o, has been calculated using the VMINS3 model.
The SD bands %8Ni (by), Cu, °Cu (by), #2Zn, %Zn, and %Mo (b, bs) have NS parameter values that are greater than those
of the normal deformed bands, indicating smaller rigidity. The fluctuation of the NS parameter versus the gamma energy
ratio, R, of SD bands in the A = 60 - 90 mass region is one of the study’s findings. The ratio of transition energies was
used to calculate the band head spin, lo, by the Descartes method (the greatest technique to solve the quartic equation
based on an auxiliary cubic equation) which was then confirmed by root mean square deviations. The estimated and

observed transition energies are in good agreement.

Keywords: variable moment of inertia model, nuclear softness, spin assignment.

1. Introduction

Due to the small number of particles found in
nuclei with A = 60 - 90, and the fact that they have
the lightest masses and thus the greatest rotational fre-
guencies, the superdeformed (SD) mass region
A =60 - 90 is of special interest [1]. Furthermore,
inadequate theoretical study has been done on these
SD nuclei. Most of the SD bands in this mass region
behave similarly in terms of their dynamic moment of
inertia and rotational frequency i.e., they exhibit a
smooth decrease as frequency increases. Sadly, the
only publicly available spectroscopic information for
the SD bands is gamma energies. The spin value of
the rotational bands can only be calculated theoreti-
cally because there are insufficient experimental data
on them due to non-observation of the discrete linking
transitions between the SD states and the low-lying
states at normal deformation (ND). Different tech-
niques have been used to assign spins to SD states.
The states in SD bands are given a spin using both
direct and indirect methods in these schemes [2 - 4].
The nuclear softness (NS) model [5] and the variable
moment of inertia (VMI) model [6, 7] both have a
particular application and while both are successful in
explaining certain phenomena, they fall short in
explaining others. Therefore, it made sense to think
of each of these models as complementing the others
in a single model known as the VMINS3 model,
which unifies the two models. According to this
model, the nucleus consists of an outer valence
nucleon in unfilled shells around a hard core of
nucleons. In addition to the successes of each of the

two models, this model (VMINS3) has succeeded in
formulating an equation to calculate the rotational
energy levels to the A = 60 - 90 nuclei, where the
energy levels of deformed nuclei are very compli-
cated because there is frequently coupling between
the various modes of excitation, but nonetheless some
predictions of the VMINS3 model are confirmed
experimentally. The VMINS3 model’s most signifi-
cant accomplishments include a description of the NS
parameter as a function of super-deformed band
angular momentum, transition energy (the only spec-
troscopic information universally available), and
band head spin. Section 2 of this research, which is
set up as follows, covers the details of the VMINS3
model. The findings and discussion are presented in
Section 3. The final Section of the paper presents the
conclusions.

2. Mathematical model

The VMINS3 model gives the following energy
expression as the consequence of combining the VMI
model with the NS model:

Al(l +1
E, =M+ BIZ. (1)
1+ ol
2_2
In this case, A=2i and B = Cd%0 . Therefore,

0

these parameters included the NS parameter, o, the
stretching constant, C, and the ground state moment
of inertia, 3,. The NS parameter, o, is an extra vari-
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able 9, =9, (1+ol), as a first-order approximation)

whereas the parameters, 3, and C are for the origi-

nal VMI model.
The transition energy for SD bands is written as:

E(1+2>1)=E(1+2)-E(1).  (2)

E (1525 I)=A|:2(5|2+(4+4G)| +6}

(1+20+0l)(L+ol) |

+B[41 +4]. (3)

Similarity,

E, (11 _2):A{20|2+(4_4G)| _2}

(1-20+0l)(L+al) |

E,(1-2—>1-4)=

| 2012 +(4-120)1 +(165-10)
_A{ (1-20+ol)(L+o(l-4)) +Bl41-12]
®)

We have carefully worked out the results of the
VMINS3 model using Eqg. (2), following our proce-
dure of solving the first three transition energy level
equations for the three coefficients o, A, and B. In
such an approach find the value of &, as an interme-
diate step (by eliminating A and B from Egs. (3), (4),
and (5)for 1 +2, I ,and | —2). One obtains a quartic
equation in c:

b,c* +b,6° +b,6° + b +h, =0. (6)

These are the formulas for the coefficients b, , b,
b,, b, and b, in this case, being known in terms

+B[41-4] @ of E(1+2>1), E(1>1-2)  and
Finally, we made it E (1-2—>1-4):
b, =(32r—16)1° —(128r—64)1* +(448r + 64)1° +(384r - 256)1°
=—(8r+8)l 4 (200r — 4 ) —(304r - 176) —(64r—384)1 2-1088rl —512
b, = —(24r+40)| (288r—72)|3 (200r+48)| —(920r —192) 1 +704r (7
b = —(16r—96)| +(120r—16)| +(8r+176)1 —(408r +192)
b, =32r +48
To make it simpler to write equations, we defined r
(4I—4)EV(I+2—>I)—(4I+4)EY(I—>I—2) @)

T (M1 —12)E, (142> 1)—(41 +4)E, (1—2—> 1 -4’

Since the coefficients 3, and C are traits of each
nucleus and are all positive, the solution of Eq. (6)
produces four real roots. Therefore, the smaller value
of o, is favored since, as originally mentioned by
Gupta et al. [8], a lower o, represents a smaller
correction to 3,. In order to do this, it is necessary
that the discriminant of the cubic equation that results
from using the Descartes method [9] to obtain band
head spin by solving the quartic equation be always
positive.

For a SD band cascade

lp+2n > 1, +2n-2— .. 1;+2>1,,  (9)

The transition energies that were noticed are:
EV(I0+2n), EY(I0+2n—2), EY(I0+2n—4),

E,(l,+4), E,(I,+2). Eq. (6) fits these transition
energies, by using the same equation to fit the observed
transition energies, the parameters o, A, and B values

are determined. The ratio of transition energies may be
used to calculate the band head spin as:

E (1+2—>1
R(I):—Y( ) (10)
EY(I —1-2)
One obtains a quartic equation in lo
hlg +hgl 2 +h,12 +h 1, +h,=0. (11)

These are the formulas for the coefficients h,, h,,
h,, h, and hy in this case, being known in terms of
o and R:
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h, =4Bc®(R-1)
hy =20’ (AR +6BR - A-2B)-16Bc°

h, =20(3AR+6BR — A+2B)+4c” (17BR—5A—11B + 3AR) + 4Bo® (28R — 55)
h =4((A+B)(R+1))+20(13AR +18BR - 9A+10B)+80” (13BR + 2AR — 20B —8A) +16Bc’ (32 + 9R)
hy=2(R(3A+2B)+(7A+6B))+20(A(13R-20)+12B(R+1))+160” (3BR —12B —4A)

whose coefficients are functions of o, A, B, and R,
solved by the Descartes method [9] and having four
real roots. Descartes’ rule of signs states that roots
might be either positive real, negative real, or

complex. For this, we must select the greatest |I,|

values. To confirm this choice, the root mean square
(rms) deviations of the transition energies computed
at various |,-values were used to confirm the

accuracy of the band head spin [10].

1
212

(13)

rms=|—>

1 N|Evcal(|i)_E$Xp(|i)|
D

Here N is the total number of fitting transitions.
3. Results and discussion

Since the bandhead energy and spin for the SD
bands are often unknown, one might opt to fit the E2
transitions using Eq. (2). The parameters A and B may
now be determined by fitting the E2 transitions for the
SD cascades. One may then obtain the NS parameter,
o, by using Eq. (6) and relations in Eq. (7).

(12)

By applying the Eqg. (6) and relations in Eq. (7) to
the first three of the gamma energies of all the SD
bands for *®Ni (by), *3Cu, **Cu (by), ®Zn, ®%zn, *2zn,
887n, 84Zr, 8Zr (by), Mo (bs, b,, bs) and 3Tc nuclei
in A = 60 - 90 mass region, we were able to determine
the NS parameter as given in Table 1. If complex
roots are found, as in instance ®'zn, %zn, &zr, %zr
(b1), ¥Mo (b1), and ¥Tc this indicates that VMINS3
cannot be applied to the given nuclei, this is due to the
fact that, as in the first and final cases, the cubic
equation’s root is negative, or as in the other cases, its
discriminant is negative. According to Ref. [8], most
of the NS parameter, o, values are observed to lie in
the range of 31.4-10% to 263.0-1072. These o, values
are at least 10 times larger than those of ND bands.
The NS parameter o for SD bands lies in the range of
103 < 5 < 107% as compared to ND bands [6, 11] have
arange of 102< 5 <10~* The NS parameter is related
to the extent of rigidity of SD bands. By applying the
VMINS3 model, it is determined that the SD bands
for %8Ni (by), *®Cu, *Cu (b1), %2Zn, ®Zn and Mo (b,
bs) nuclei are less rigid than the ND bands.

Table 1. The real root (NS parameter, ) of Eq. (6) for SD bands for nuclei
in A = 60 - 90 mass region together with the experimental transition energy

Experimental transition energy, keV NS parameter, o
PR ROz | BRP0o1-9) | BP0 e e e
%Ni(by) 1663 1989 2350 0.853 | 4.720 | 2.450 | 3.130
8Cu 830 1197 1576 1610 | 7.670 | 3.380 | 5.900
Cu(by) 1599 1900 2242 1.380 | 4.090 | 3.180 | 2.290
81Zn 1432 1626 1845 - - - -
827Zn 1993 2215 2440 0.680 | 4.740 | 2.710 | 2.700
85Zn 1341 1491 1668 - 3.790 | 2.630 -
88Zn 1506 1717 1918 - - - -
84zr 1526 1663 1808 - - - -
8Zr(by) 1518 1646 1785 - - - -
8Mo(by) 1238 1343 1481 - - - -
BMo(by) 1458 1596 1743 0.358 | 4.450 | 3.400 | 1.410
8Mo(bs) 1260 1384 1521 0.314 | 3.740 | 2.820 | 1.230
8Tc 1147 1259 1384 - - - -
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In Table 2, we have summarized the band head
spin in the mass range A =~ 60 - 90 in the present study
and prior studies [12, 13]. The VMINS3 model is not
able to assign the I, for some nuclei as ®zn, %zn,
87r, ¥Zr (by), ¥Mo (b1), and ¥Tc due to complex
roots found in Eq. (11). It is helpful to try to connect
the data in terms of some theory of nuclear structure
search like the VMINS3 model in order to systema-
tize what would otherwise be a perplexing mass of

data. It is clear from this comparison that our present
results for the band head spin appear to relatively
satisfy the experimental data available when com-
pared to findings from earlier investigations. The
VMINS3 model formula has been used to fit the E2
gamma energies of all the SD bands for *Ni (by),
*8Cu, *°Cu (b1), #Zn, zn, ©2zn, ®zn, ¥zr, 8zr (by),
Mo (by, b, bs) and &Tc nuclei in A = 60 - 90 mass
region.

Table 2. The band head spin lo for SD bands as well as the values
from the available theoretical models, together with the computed transition energy
and the parameters A and B utilized in the fitting

SD band EF (lo—>10-2), E;/MINS3 (lo—>1o-2), | A-20%, B-10%, Present Re:‘(.) Ref. | Exp.

keV keV keV KeV' | assigned | [12] | [23] | [24]
%Ni(by) 1663 1718 -3.470 3.95 10 13 13 15
%8Cu 830 887 —6.700 4.30 8 8 4 9
59Cu(by) 1599 1615 5590 | 3.92 85 135 | 125 | -

517Zn 1432 — - - - 175 | 135 | 125
827n 1993 2001 —-0.297 2.75 14 22 18 -
85Zn 1341 1310 1.320 2.24 17.5 125 | 205 —
8Zn 1506 - - - - 18 14 -
847r 1526 — - - - 25 21 -
%Zr(by) 1518 - - - _ 27 | 28 | -
B\o(by) 1238 - _ - - 27 | - | -
8Mo(by) 1458 1503 -0.644 1.50 21 24 32 -
B\ o(bs) 1260 1313 Z0641 | 1.30 21 23 | - | -
8Tc 1147 - - - - 235 | 205 -

For these nuclei, we took into account only the SD
bands for which conditions were satisfied. Firstly: the
roots of Eq. (6) are real either positive or negative (the
NS parameter, c). Secondly: they are subject to the
constraint Gupta et al. [8], (the smallest value among
the roots). Finally: our constraint is to select the
largest lo — value regardless of its sign (resulting from
solving quartic Eq. (11)). Due to the fact that the rms
deviation of the larger I, is less than the mean square
deviation of the smaller lo, Table 3 demonstrates that
the SD bands for the nuclei *®Ni (b1), **Cu (b1), %2Zn,
and %Mo (by) fulfill all requirements. Mo (bs)
fulfills all requirements due to no other value for o
appears, where the number of negative real roots and
complex roots is two, as stated by Descartes’ rule for
signs. Since the negative second root’s value is so tiny
~0.5, it cannot adequately reflect the value of 1. SD
bands for the nuclei *®Cu, and %Zn satisfy all
conditions except that rms deviation of the smaller Iy

is bigger than the rms deviation of the larger lo, may
be due to that SD bands for the nuclei **Cu, and %zn
configurations involve the single-particle states w3m
where m is the number of protons in the N = 3 intruder
levels, where N represents the principal oscillator

quantum number. The R, =%, energy ratio in the
2

deformed even-even nuclei is one of the most
prevalent indicators of rigidity. Since the SD bands
are high spin bands with unknown band head
energies, we are unable to determine such an energy
ratio Rs. We instead make use of the gamma-ray
transition  energy  ratios.  Therefore, using
experimental gamma-ray transition energies [14], we
compute the ratios as shown in Eq. (10) and plot the
NS parameter vs these ratios in the SD bands where
the ratio could be computed (this is only possible in
those SD bands where the same set of spins are
known, i.e., it shares the same angular momenta).
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Table 3. Comparison of the calculated and experimental Ey, keV.
The calculated transition energies for different band head spin (lo)
with the rms deviation value of SD bands for nuclei under study

EXP(1—>1-2) | EMN3 (15 1-2) | EMN3 (1 1-2) | EMN3 (1 1-2)
Nucleus %8Ni(by)

Band head spin 8 10
1663 15 1718 10 927 12 1243
1989 17 2034 12 1243 14 1560
2350 19 2350 14 1560 16 1876
2750 21 2666 16 1876 18 2192
3157 23 2982 18 2192 20 2508
rms 0.033367732 0.358854505 0.216548835

Nucleus 8Cu

Band head spin 4 8
8300 9 8870 6 7140 10 1059
1197 11 1231 8 1059 12 1404
1576 13 1576 10 1404 14 1748
1955 15 1920 12 1748 16 2093
2342 17 2265 14 2093 18 2437
2748 19 2609 16 2437 20 2781

rms 0.039670261 0.115484718 0.144171304
Nucleus Cu(b,)

Band head spin 6.5 8.5
1599 14.5 1615 8.5 675 105 988
1900 16.5 1929 10.5 988 12.5 1302
2242 18.5 2242 125 1302 14.5 1615
2611 20.5 2555 14.5 1615 16.5 1929
3004 22.5 2869 16.5 1929 18.5 2242
3424 24.5 3182 18.5 2242 20.5 2555
3827 26.5 3495 20.5 2555 22.5 2869

rms 0.046812415 0.42145265 0.288538876
Nucleus 52Zn

Band head spin 11 14
1993 18 2001 13 1451 16 1781
2215 20 2220 15 1671 18 2001
2440 22 2440 17 1891 20 2220
2690 24 2660 19 2110 22 2440
2939 26 2880 21 2330 24 2660
3236 28 3099 23 2550 26 2880

rms 0.01975576 0.230661883 0.098849569
Nucleus %5Zn

Band head spin 12.5 175
1341 125 1310 14.5 1489 195 1937
1491 14.5 1489 16.5 1668 215 2116
1668 16.5 1668 18.5 1847 23.5 2295
1887 18.5 1847 20.5 2026 25.5 2474
2121 20.5 2026 22.5 2205 27.5 2653
2362 22.5 2205 24.5 2384 29.5 2832
2963 24.5 2384 26.5 2563 315 3011
3005 26.5 2563 28.5 2743 33.5 3190
3349 28.5 2743 30.5 2922 35.5 3369

rms 0.105359684 0.098311827 0.282340067
Nucleus %Mo(b,)

Band head spin 9 21
1458 30 1503 11 369 23 1084
1596 32 1623 13 487 25 1204
1743 34 1743 15 606 27 1323
1895 36 1863 17 725 29 1443
2051 38 1983 19 845 31 1563
2229 40 2103 21 964 33 1683

rms 0.031181183 0.647413223 0.244171972
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Continuation of Table 3

VMINS3 VMINS3 VMINS3
EFP(1>1-2) I E, (1>1-2) | E, (1>1-2) | E, (1>1-2)
Nucleus 8Mo(bs)
Band head spin 21
1260 32 1313 23 846
1384 34 1417 25 950
1521 36 1521 27 1053
1671 38 1625 29 1157
1816 40 1729 31 1261
1971 42 1833 33 1365
2135 44 1937 35 1469
2298 46 2041 37 1573
rms 0.062598033 0.31232299
2.5 -
2.0
b
o] .
g 1.5
© 59Cu(bl)
a8
v 1.0
2 b) @
0.5 ~
0.0
1.09 1.10 111 1.12 1.13 1.14 1.15

Ratio of gamma-ray transition energies, R(I)

The variation of NS parameter versus the ratio of gamma-ray transition energies.

In Figure the NS parameter, ¢ is plotted against
the calculated energy ratio E,(20 — 18)/E,(18 — 16)
for the SD bands for the nuclei *®Ni (b), *Cu and
%2Zn, E,(20.5 — 18.5)/E,(18.5 — 16.5) for the SD
bands for the nuclei ®zn and %°Cu (bs), and
E,(27 — 25)/E,(25 — 23) for the SD bands for the
nuclei ®¥Mo (b,) and Mo (bs). The NS parameter
decreases as the energy ratio increases except in the
case of the SD band of an odd-odd nucleus **Cu for
the first group. As for the other two groups the NS
parameter decreases as the energy ratio increases. It
suggests that with the increasing value of the energy
ratio, the rigidity of SD bands increases.

4. Conclusion
In this paper, we converted the original VMI

Hamiltonian into an equivalent VMINS3 Hamilto-
nian wherein the moment of inertia does not appear

in the rotational kinetic energy term with explicit
expression given by Eq. (1), showing its dependence
on the Hamiltonian parameters and the NS parameter,
c. We have investigated the band head spin for SD
bands in the mass region A = 60 - 90. Our main
motivation was to prove that the VMINS3 model is
an improvement of the VMI model. To that goal, we
have employed the Descartes method to solve the
guartic equation of band head spin. We provided new
analytical formulae for the NS parameter, c. By
applying the VMINS3 model, it is determined that the
SD bands for %8Ni (b), 8Cu, °Cu (by), %2Zn, ®Zn and
®Mo (b,, bs) nuclei are less rigid than the ND bands.
The value of the transition energy ratio increases with
increasing the rigidity of SD bands. The estimated
and observed transition energies are in fairly satisfac-
tory agreement. This method for spin assignment of
SD rotational bands may help to design future experi-
ments for SD bands.
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SIIEPHA M’SIKICTh Y MOJIEJII 31 3SMIHHUM MOMEHTOM IHEPLII{
TA ii 3ACTOCYBAHHS 10 HAJUIE®@OPMOBAHUX CMYT B OBJIACTI MAC A ~ 60 — 90

Il naggedopmosanux (SD) emyr %8Ni (by), 8Cu, °Cu (by), 51Zn, 2Zn, %5Zn, %8Zn, 84Zr, 8Zr (by), Mo (by, by, bs)
i 8Tc B obmacti mac A = 60 - 90, mapamerp suepHoi M’ sxocti (NS), 6, OyB pOo3paxoBaHMii 3a JONOMOTOK MOJENI
VMINS3. Cmyru SD %Ni (b;), %¥Cu, ¥Cu (bs), %2Zn, ®Zn i 8Mo (b,, bs) marors 3nauenns napamerpa NS, ski
MIePEBUIIYIOTh 3HAYECHHSI HOPMAJIFHO N1e()OPMOBAHUX CMYT, IO BKa3y€ Ha MEHIIY KOPCTKICTh. 3aJIeKHICTh (QIIyKTyaril
nmapameTpa NS BiJl BiIHOIIEHHS €HEepriif raMMa-BUIIPOMiHIOBaHHS, R, B 00macti mac A =~ 60 - 90 € omHUM i3 pe3yIbTaTIB
JIoCTiKeHHS. BinHomeHHs eHepriit mepexoiB Oyi0 BUKOPUCTAHO I pO3PaxyHKY TOJIOBHOTO ciiHy, lo, 32 MeTomoM
Hekapra (Halikpamuii MeToJ pO3B’si3aHHS DIBHSHHS YETBEPTOi CTENEeHi 3a JOIMOMOIOK KyOIYHOTro pIiBHSIHHS), 3
MOCTIIyFOUNM BHKOPHUCTAHHSAM CEPEAHBOKBAAPATHYHOrO BimxuiacHHsA. OI[HEHI Ta CIIOCTEPEKCHI SHEpPrii MmepexoiB
J00pe y3roKyIOThCS.

Kniouoei croea: Mmonens 31 3SMiIHHIM MOMEHTOM 1HEPIIil, siiepHa M SIKICTh, BU3HAUEHHS CITIHY.
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