![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Alpha-nucleus interaction potential
V. Yu. Denisov, A. A. Khudenko
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: The parameters of the interaction potential between alpha-particle and nucleus are evaluated in the framework of unified model for alpha-decay and alpha-capture (UMADAC). The alpha-decay half-lives are evaluated in the framework of the cluster model using the WKB approximation. Both processes, alpha-decay and alpha-capture, are considered as penetration of the alpha-particle through the potential barrier formed by nuclear, Coulomb and centrifugal forces. The spins and the parities of parent and daughter nuclei, the quadrupole and hexadecapole deformations of daughter nuclei are taken into account at evaluation of the alpha-decay half-lives. The alpha-nucleus interaction potential is obtained by fitting experimental data for both the alpha-decay half-lives of 344 nuclei and the alpha-capture cross-sections of 40Ca, 44Ca, 59Co, 208Pb and 209Bi.
References:1. Audi G., Bersillon O., Blachot J., Wapstra A. H. The AME2003 atomic mass evaluation: (I). Evaluation of input data, adjustment procedures. Nucl. Phys. A 729 (2003) 129. https://doi.org/10.1016/j.nuclphysa.2003.11.002
2. Tuli J. K. Nuclear wallet cards (last update April 11, 2008). http://nndc.bnl.gov
3. Gupta M., Burrows T. W. Nuclear Data Sheets for A = 266 - 294. Nucl. Data Sheets 106 (2005) 251. https://doi.org/10.1016/j.nds.2005.10.005
4. Belli P., Bernabei R., Cappella F., Cerulli R. et al. Search for α-decay of natural Europium. Nucl. Phys. A 789 (2007) 15. https://doi.org/10.1016/j.nuclphysa.2007.03.001
5. Möller P., Nix J. R., Kratz K. -L. Nuclear properties for astrophysical and radioactive-ion-beam applications. At. Data and Nucl. Data Tables 66 (1997) 131. https://doi.org/10.1006/adnd.1997.0746
6. Sobiczewski A., Parkhomenko A. Description of α-Decay Half-Lives of Heaviest Nuclei. Phys. At. Nucl. 69 (2006) 1155. https://doi.org/10.1134/S106377880607009X
7. Royer G., Zhang H. F. Recent α decay half-lives and analytic expression predictions including superheavy nuclei. Phys. Rev. C 77 (2008) 037602. https://doi.org/10.1103/PhysRevC.77.037602
8. Dasgupta-Schubert N., Reyes M. A. The generalized liquid drop model alpha-decay formula: Predictability analysis and superheavy element alpha half-lives. At. Data and Nucl. Data Tables 93 (2007) 907. https://doi.org/10.1016/j.adt.2007.06.006
9. Denisov V. Yu., Ikezoe H. α-nucleus potential for α-decay and sub-barrier fusion. Phys. Rev. C 72 (2005) 064613. https://doi.org/10.1103/PhysRevC.72.064613
10. Medeiros E. L., Rodrigues M. M. N., Duarte S. B., Tavares O. A. P. Systematics of alpha-decay half-life: new evaluations for alpha-emitter nuclides. J. Phys. G 32 (2006) B23. https://doi.org/10.1088/0954-3899/32/8/B01
11. Eberhard K. A., Appel Ch., Bargert R. et al. Fusion Cross Sections for α+40,44Ca and the Problem of Anomalous Large-Angle Scattering. Phys. Rev. Lett. 43 (1979) 107. https://doi.org/10.1103/PhysRevLett.43.107
12. John J., Robinson C. P., Aldridge J. P., Davis R. H. Shape and Compound Elastic Scattering of α-particles by 40Ca, 5.0 to 12.5 MeV. Phys. Rev. 177 (1969) 1755. https://doi.org/10.1103/PhysRev.177.1755
13. D'Auria J. M., Fluss M. J., Kowalski L., Miller J. M. Reaction Cross Section for Low-Energy Alpha Particles on 59Co. Phys. Rev. 168 (1968) 1224. https://doi.org/10.1103/PhysRev.168.1224
14. Barnett A. R., Lilley J. S. Interaction of alpha particles in the lead region near the Coulomb barrier. Phys. Rev. C 9 (1974) 2010. https://doi.org/10.1103/PhysRevC.9.2010
15. Information from website: https://www-nds.iaea.org/RIPL-2/