Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2008, volume 9, issue 3, pages 16-21.
Section: Nuclear Physics.
Received: 09.06.2008; Published online: 30.12.2008.
PDF Full text (en)
https://doi.org/10.15407/jnpae2008.03.016

Non-Markovian large-amplitude motion and nuclear fission

V. M. Kolomietz, S. V. Radionov

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: The general problem of dissipation in macroscopic large-amplitude collective motion and its relation to the energy diffusion of the intrinsic degrees of freedom of a nucleus is studied. By applying the cranking approach to the nuclear many-body system, a set of coupled dynamical equations for the collective classical variables and the quantum mechanical occupancies of the intrinsic nuclear states is derived. Different dynamical regimes of the intrinsic nuclear motion and its consequences on time properties of the collective dissipation are discussed. The approach is applied to the descent of the nucleus from the fission barrier.

References:

1. Siemens P. J., Jensen A. S. Elements of Nuclei: Manybody Physics with the Strong Interaction (Addison and Wesley, 1987).

2. Hasse R. W., Myers W. D. Geometrical Relationships of Macroscopic Nuclear Physics (Berlin, Heidelberg: Springer-Verlag, 1988). https://doi.org/10.1007/978-3-642-83017-4

3. Hofmann H. Phys. Rep. 284 (1997) 137. https://doi.org/10.1016/S0370-1573(97)00006-9

4. Balescu R. Equilibrium and Nonequilibrium Statistical Mechanics. Vol. 2 (New York: Wiley, 1975).

5. Frenkel J. Kinetic Theory of Liquids (Oxford: Clarendon, 1946).

6. Ayik S., Nörenberg W. Time-Dependent Shell-Model Theory of Dissipative Heavy-Ion Collisions. Z. Phys. A 309 (1982) 121. https://doi.org/10.1007/BF01414973

7. Kolomietz V. M. Stochastic aspects of nuclear large amplitude motion. Phys. Rev. C 52 (1995) 697. https://doi.org/10.1103/PhysRevC.52.697

8. Kolomietz V. M., Shlomo S. Nuclear Fermi-liquid model. Phys. Rep. 390 (2004) 133. https://doi.org/10.1016/j.physrep.2003.10.013

9. Zwanzig R. Ensemble Method in the Theory of Irreversibility. J. Chem. Phys. 33 (1960) 1338. https://doi.org/10.1063/1.1731409

10. Kolomietz V. M., Åberg S., Radionov S. V. Collective motion in a quantum diffusive environment. Phys. Rev. C 77 (2008) 04315. https://doi.org/10.1103/PhysRevC.77.014305

11. Kolomietz V. M., Radionov S. V., Shlomo S. Memory effects on the descent from fission barrier. Phys. Rev. C 64 (2001) 054302. https://doi.org/10.1103/PhysRevC.64.054302