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The general problem of dissipation in macroscopic large-amplitude collective motion and its relation to the energy 
diffusion of the intrinsic degrees of freedom of a nucleus is studied. By applying the cranking approach to the nuclear 
many-body system, a set of coupled dynamical equations for the collective classical variables and the quantum 
mechanical occupancies of the intrinsic nuclear states is derived. Different dynamical regimes of the intrinsic nuclear 
motion and its consequences on time properties of the collective dissipation are discussed. The approach is applied to 
the descent of the nucleus from the fission barrier. 

 
1. Introduction 

 
Nuclear large-scale dynamics (nuclear fission, 

heavy ion collisions etc.) is a good probe for the 
investigation of the complex time evolution of finite 
Fermi systems. The conceptual question is here how 
collective modes of motion appear in a system with 
many degrees of freedom and how they interact with 
all other intrinsic modes. Nuclear collective 
dynamics can be studied by using the concept of 
macroscopic motion for a few collective degrees of 
freedom, which are chosen to describe gross 
properties of the nucleus [1 - 3]. Such a kind of 
approach is acceptable for a slow collective motion 
where the fast intrinsic degrees of freedom exert 
forces on the collective variables leading to a 
transport equation. The crucial point of such an 
approach is separation of the total energy of a 
system into the potential energy, collective kinetic 
energy and dissipation energy. Moreover the 
dissipation of collective motion implies fluctuations 
in the corresponding collective variables, as follows 
from the fluctuation-dissipation theorem [4].  

Dissipation of the nuclear collective energy 
reveals itself, for instance, as the non-zero 
contribution of the internucleonic collisions to the 
widths of the nuclear giant multipole resonances. On 
the other hand, the experimental observation of the 
finite variance of the kinetic energy of the fission 
fragments manifests the fact that the fluctuations 
have to be also associated with the collective 
variables. Both the dissipation and the fluctuations 
can be described by the introduction of friction and 
random forces, related to each other by the 
fluctuation-dissipation theorem. In this respect, the 
Fokker - Planck or Langevin approaches can be used 
to study the nuclear large-scale dynamics. In 
general, basic equations of motion for the 
macroscopic parameters, describing complex 
dynamics of the many-body systems like nuclei, 
have a non-Markovian structure. One of the first 
considerations of memory (non-Markovian) effects 
for classical liquids can be found in Ref. [5]. For the 

dynamics of nuclei, memory effects have been 
investigated within different approaches. In this 
respect, one can mention the dissipative diabatic 
model [6], the linear response theory [3] and the 
fluid dynamic approach [7, 8]. In this paper, we 
would like to apply the non-Markovian dynamics to 
the study of the nuclear fission characteristics and 
clarify the role of the fluctuation and memory effects 
in the descent of the nucleus from the fission barrier 
to the scission point.  

The plan of the paper is as follows. In Sect. 2, we 
derive the non-Markovian Langevin equation of 
motion for the nuclear shape variables starting from 
the collisional kinetic equation. Sect. 3 is devoted to 
details of the numerical determination of the saddle–
to–scission time and in presence of the memory 
effects and the random force for the descent of the 
nucleus from the barrier to the scission point. 
Summary and conclusions are given in Sect. 4.  

 
2. Nuclear many-body system 

 
We assume that dynamics of nuclear many body 

system can be described as a coupled motion of the 
macroscopic collective modes and intrinsic 
nucleonic ones. Slow collective modes of the 
nuclear large-amplitude motion are treated in terms 
of a set of classical time-dependent variables n, 
while the fast intrinsic modes are described quantum 
mechanically through the time evolution of 
occupancies of nucleonic many body states.  

The intrinsic dynamics can be determined 
through the Liouville equation for the density matrix 
operator ρ ,  

 

0,iL
t
ρ ρ∂
+ =

∂
                              (1) 

 

where L  is the Liouville operator defined in terms 
of the commutator, , /L Hρ ρ⎡ ⎤= ⎣ ⎦ , of the nuclear 

many body Hamiltonian H .  
Using Zwanzig’s projection technique [9] and a 
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basis of adiabatic eigenenergies nE  and 
eigenfunctions nΨ  of the nuclear many body 

Hamiltonian [10], we can get dynamical equations 
for a non-diagonal part of the density matrix, 

 

, ,
0

exp[ ( )]
( ) ( ) ( ) ( ) ( ) ( )

t
nm

nm i mn nn i nm mm
i nm

i t s
t i dsq s h s s h s s

ω
ρ ρ ρ

ω
− −

= − −⎡ ⎤⎣ ⎦∑∫ ,                           (2) 

 
and its diagonal part, 
 

[ ], ,2 2
, 0

( ) cos[ ( )]2 ( ) ( ) ( ) ( ) ( ) ( )
t

nn nm
i j i nm j mn mm nn

i j m n nm

t t s
q t dsq s h t h s s s

t
ρ ω

ρ ρ
ω≠

∂ −
= −
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Here, ( ) /nm n mE Eω = −  and matrix elements 

,
ˆ /i nm i nm

h H q= ∂ ∂  measure the coupling between the 

quantum nucleonic and the macroscopic collective 
subsystems. 

To proceed further, we use a random matrix 
theory developed in our previous paper [10] for the 
case of a single collective coordinate. We omit all 
intermediate steps and give a basic diffusion-like 
equation of motion for the ensemble averaged 
occupancies ( ,   )E tρ  of the many body states 

nE E≡ : 
 

0
,

( ,  ) ( ,  )Ω( ) ( ) exp ( [ ],  [ ]) ( ) Ω( ) ,
/ Γ

t

ij i ij j
i j ij

t sE t E sE s q t ds Y q t q s q s E
t E E

ρ ρ⎛ ⎞−∂ ∂ ∂⎡ ⎤= −⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂⎣ ⎦⎝ ⎠
∑ ∫                  (4) 

 
where ijs  and Γij  are, correspondingly, the strengths 
and widths of the energy distributions of the 
ensemble averaged coupling matrix elements ,i mnh , 

( [ ],  [ ])ijY q t q s  are the correlation functions 
measuring how strong the coupling matrix elements 
correlate at different collective deformation 
parameters [ ]q t  and [ ]q s , and Ω( )E is the nuclear 
many body level density at excitation energy E . 
 

2.1. Energy rate 
 

In order to define properly dynamics of the 
classical collective parameters ( )q t  within the 
cranking approach, one has to consider total energy 
of the nuclear many body system, which can be 
written as  

 

{ }Σ( ) ( ) ( [ ]) ( ) ,gst E q Tr H q t tρ= +               (5) 
 
Differentiating over time both sides of Eq. (6), we 
get  
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ρ
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The first term in the right-hand side of Eq. (6) 

describes a change of the collective potential energy. 

The second term depends on the non–diagonal 
component of the density matrix ( )nm tρ . Its time 
evolution is caused by the virtual transitions among 
adiabatic states of the nuclear many-body 
Hamiltonian. We believe that such a term is a 
microscopic source for the appearance of the 
collective kinetic energy: 

 

Σ ( )iji j
i jvirt

d B qq q
dt

⎛ ⎞ ≈ ,⎜ ⎟
⎝ ⎠

∑ ∑                 (7) 

 

where ijB  is a collective mass parameter,  
 

3 [ ]ij i nm j mn nm mm nn
n m

B h h ω ρ ρ−
, ,

,

= − .∑            (8) 

 

It can be easily shown that the third and fourths 
terms in the energy–rate expression (6) can be 
combined as ( )n nnn

d E dtρ /∑  and that is the rate of 
change of the intrinsic nucleonic energy 

n nnn
E E ρ∗ = ∑ . The energy E∗  of the intrinsic 
excitations is defined by the real transitions between 
the adiabatic many body states of the system and we 
represent the corresponding contribution to the rate 
of change of the total energy of the nuclear system 
as follows  
 

*Σ 1 1( )i
ireal q i

d dEq t
dt M q dt

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∑              (9) 

 

where qM  is the total number of the collective 
degrees of freedom. 
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Collecting Eqs. (8) and (10), one obtains for (7),  
 

Σ ( ) ( )i
i

d q t F q q t
dt

⎛ ⎞ = , , ,⎜ ⎟
⎝ ⎠

∑                 (10) 

 
where quantities iF  mean forces acting on the 
collective subsystem given by  
 

*1 1gs
i ij j

j i q i

E dEF B q
q M q dt

∂
= + +

∂∑ .          (11) 

 
2.2. Equations of motion for the collective parameters 

 
To get qM  equations of motion for qM  

unknown collective parameters iq , we assume that 
all partial contributions to the energy rate (11) are 

zero [1],  
 

0,  1,  ...,  i qF i M= = .                        (12) 
 

Thus, the collective dynamics satisfy the 
following set of equations  

 
*1 1[ ] gs

ij j
j i q i

E dEB q q
q M q dt

∂
= − −

∂∑ .        (13) 

 
One can demonstrate that for the constant-

temperature level density, Ω( ) exp( )E const E T= ⋅ / ,  
where T  is the temperature of the nucleus, we 
obtain a closed set of equations of motion for the 
collective parameters: 

 

0

'
[ ] ' exp ( [ ],  [ ']) ( ')

/
tgs ij

ij j ij j
j ji ij

E s t t
B q q dt Y q t q t q t

q T Γ
⎛ ⎞∂ −

= − − −⎜ ⎟⎜ ⎟∂ ⎝ ⎠
∑ ∑ ∫ .                             (14) 

 
It should be pointed out that Eq. (14) describes 

the ensemble averaged collective dynamics, i. e., 
averaged over many different random realizations of 
the intrinsic nucleonic subsystem. In this way, of 
course, we loose information about the quantum 
fluctuations of the intrinsic degrees of freedom of 
the nuclear many body system which, in principle, 
may be important. In order to try to take them into 
account somehow, we introduce a phenomenological 

stochastic force term, ( )i tξ , into the collective 
equations of motion (14) and requiring that the 
fluctuation-dissipation theorem is hold, 

 

'
( ) ( ') ( [ ],  [ '])exp

/i j ij ij
ij

t t
t t Ts Y q t q tξ ξ

Γ
⎛ ⎞−

= −⎜ ⎟⎜ ⎟
⎝ ⎠

.  (15) 

 

With this, the collective dynamics gets a form of the 
non-Markovian Langevin equations of motion  

 

0
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E s t t
B q q dt Y q t q t q t t
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3. Numerical calculations 

 
Now we turn to the numerical determination of 

nuclear fission’s characteristics. We study the 
symmetric fission of highly excited heavy nuclei 
whose space shape may be obtained by rotation of 
some profile function 2 ( )Y z  around z -axis. It is 
considered a 2-parametric family of the Lorentz 
shapes [2]:  

 
2 2 2 2 2

0 2( ) ( )( )Y z z z Qζ ζ= − + / ,              (17) 
 

where the multiplier 3 2 2
0 0 2( 5 )Q ζ ζ ζ= − / +  guarantees 

the conservation of the nuclear volume. Here, all 
quantities of the length dimension are expressed in 
units of the radius 0R  of the spherical equal–volume 
nucleus. The parameter 0ζ  in Eq. (17) defines an 
elongation of the figure, while 2ζ  is responsible for its 
neck. Thus, in the case of 2ζ = ∞  we have a 
spheroidal shape and for 2 0ζ∞ < <  the neck appears.  

The adiabatic collective potential energy of 
deformation ( )gsE q  were taken from Ref. [2]. The 
equations of motion (15), (16) were solved 
numerically with the help of the simplest Euler 
method with the initial conditions corresponding to 
the saddle-point deformation and the initial kinetic 
energy ,0 1 MeVkinE =  (initial neck velocity 

2 0ζ = ). The numerical calculations were performed 
for the symmetric fission of the nucleus 236 U  at 
temperature 2 MeVT = . We define the scission line 
from the condition of the instability of the nuclear 
shape with respect to any variations of the neck 
radius: 

 

2

2

( )
0gs

neck

E q
r

∂
=

∂
,                            (18) 

 

where 2 2
2 0 0 2/ ( / 5 )neckr ζ ζ ζ ζ= +  is the neck radius.  

We considered a time of the nuclear descent from 
the saddle point to the scission (18). The total 
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number of 42 10N = ⋅  trajectories 0 2( ), ( )t tς ς , 
generated by the different random realizations of the 
random forces ( )i tξ , were taken into consideration 
in order to define the dynamic path of the system 
(15), (16). To simplify the problem and clarify the 
role of the random force in the non-Markovian 
dynamics of the system, we stopped running 
trajectories 0 2( ),  ( )t tς ς  when they cross the line 

0 2( , ) Newt
neck neckr rζ ζ = , where Newt

neckr  is the neck radius’ 

value determined from the Newtonian non-
Markovian dynamics ( i. e., when the stochastic 
terms are absent in Eqs. (15), (16)).  

In Fig. 1, we show the Langevin (solid line) and 
Newtonian (dashed line) dynamic trajectories of the 
neck radius ( )neckr t . Horizontal line in the figure 
gives the scission value of the neck radius Newt

neckr  
derived from the Newtonian calculation. 

Fig. 1. Typical Langevin (solid line) and Newtonian 
(dashed line) trajectories of the neck radius ( )neckr t  of the 
system (15), (16). Horizontal line is the value of Newt

neckr  
derived from the Newtonian dynamics. 

Fig. 2. Histogram of a probability density p  of the 
descent times sct  for the non-Markovian Langevin 
dynamics (15), (16) at the relaxation time 

23/ 2 10r sτ Γ −≡ = ⋅ , when the size of memory effects is 
quite small. The vertical line gives the Newtonian 
estimation for the descent time. 

 
A histogram of the distribution p  of the saddle-

to-scission times sct  is given in Fig. 2. We found 
that the most probable and mean value of the descent 
time are significantly smaller than the Newtonian 
estimation of sct  shown by a vertical line. In fact, 
the random force speeds up the process of descent 
from the fission barrier. Indeed, the action of a 
random force, in some sense, "shakes loose" the 
system giving rise to a smaller time of motion 
between two given points comparing to the 
corresponding time for the unperturbed of the 
system. It should be pointed out that this is hold both 
for Markovian Langevin dynamics (it may be 
demonstrated analytically for some quite simple 
models) and non-Markovian Langevin dynamics. 
The last feature is demonstrated in Fig. 3, where the 
mean value sct  of the descent time is plotted versus 
the relaxation time rτ  for the Langevin (solid line) 
and Newtonian (dashed line) [11] paths of the 
system. 

As seen in Fig. 3, the difference between the two 
non-Markovian calculations of the mean saddle-to- 

Fig. 3. The mean value of the descent time sct  for the 
non-Markovian Langevin dynamics (15), (16) versus the 
relaxation time rτ  is shown by solid line. The Newtonian 
calculation of the descent time is given by the dashed line. 

 
scission time grows with the relaxation time. This 
fact may be explained by the correlation properties 

0 2 4 6
0,0

0,2

0,4

0,6

p

tsc(10-21s)

0 2 4 6 8 10
0

4

8

<tsc>(10-21s)

τr(10-23s)



V.M. KOLOMIETZ,  S.V. RADIONOV 

                                                                                                                                       ЯДЕРНА  ФІЗИКА  ТА  ЕНЕРГЕТИКА   № 3 (25)   2008 20

of the random forces in the non-Markovian 
Langevin equations, see Eq. (15). As can be seen 
from Eq. (15), the increase of the relaxation time rτ  
amplifies the correlation in the collective 
coordinates 0 2( ),  ( )t tς ς  at two subsequent moments 
of time t  and ∆t t+ . As a result, one might expect 
that a quite big change, occurred for the 
coordinates 0 2,  ς ς  at time t , will give rise to a 
sufficiently big change for 0 2,  ς ς  even at the next 
time step ∆t t+ . This tendency will be stronger as 
far as the relaxation time rτ  grows up. Therefore, in 
average the system will reach the scission faster as 
compared to the non-Markovian motion of the 
system.  
 

4. Summary and Conclusions 
 

Within non-Markovian Langeven approach, we 
have demonstrated a consistent description of 
nuclear large-amplitude dynamics, including the 
memory effects and the random force. We have 
averaged the intrinsic nucleonic dynamics (4) over 
suitably chosen statistics of the randomly distributed 
coupling matrix elements and the energy spacings. 
Owing to this procedure, we have derived the 
diffusion-like equation of motion for the smeared 
occupancies ( ,   )E tρ  of the adiabatic many body 
states. Note that the obtained equation of motion for 

( ,   )E tρ  is the non-Markovian one, where the 
memory effects depend on the width of the 
randomly distributed matrix elements.  

Applying the ensemble averaging procedure, we 
have also derived the collective mass parameter and 
the internal energy rate. Finally, we derive a set of 
coupled dynamic equations for the macroscopic 
variables which take into consideration the time 
variation of the occupancies of the intrinsic nuclear 
states. Following the fluctuation-dissipation 
theorem, we have incorporated also the relevant 
random force into the macroscopic equations of 
motion.  

The main contribution to the rate of dissipation 
energy is due to the jump probabilities leading to a 
rate of dissipation which depends essentially on the 
total energy of the nucleus. The final result shows 
that a time irreversible energy exchange between the 
collective and internal degrees of freedom is 
possible when the level density increases with 
energy. We have applied our approach to the 
description of the descant of the nucleus from the 
fission barrier. We show that the random force 
accelerate significantly the process of descent from 
the barrier for both the Markovian and non–
Markovian Langevin dynamics. We have observed 
that the difference between the two non–Markovian 
calculations (see Fig. 3) of the mean saddle-to-
scission time grows with the relaxation time. This 
fact may be explained by the correlation properties 
of the random force in the non-Markovian Langevin 
equations. 
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НЕ-МАРКОВСЬКИЙ  РУХ  ВЕЛИКОЇ  АМПЛІТУДИ  ТА  ПОДІЛ  ЯДЕР 

 

В. М. Коломієць,  С. В. Радіонов 
 

Досліджується загальна проблема дисипації в макроскопічному колективному русі з великими амплітудами 
та її відношення до дифузії енергії внутрішніх ступіней вільності ядра. Застосовуючи cranking-наближення до 
ядерної багаточастинкової системи, ми одержуємо систему зв’язаних рівнянь для колективних змінних та 
заселеностей внутрішніх ядерних станів. Обговорюються різні динамічні режими внутрішнього ядерного руху 
та їх вплив на властивості дисипації в колективному русі. Підхід застосовано до опису спуску ядра з бар’єра 
поділу. 
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НЕ-МАРКОВСКОЕ  ДВИЖЕНИЕ  БОЛЬШОЙ  АМПЛИТУДЫ  И  ДЕЛЕНИЕ  ЯДЕР 
 

В. М. Коломиец,  С. В. Радионов 
 

Исследуется общая проблема диссипации в макроскопическом коллективном движении с большими 
амплитудами и ее отношение к диффузии энергии внутренних степеней ядра. Применяя cranking-приближение 
к ядерной многочастичной системе, мы получаем систему связанных уравнений для коллективных переменных 
и заселенностей внутренних ядерных состояний. Обсуждаются различные динамические режимы внутреннего 
ядерного движения и их влияние на свойства диссипации в коллективном движении. Подход применяется к 
описанию спуска ядра с барьера деления. 
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