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NON-MARKOVIAN LARGE-AMPLITUDE MOTION AND NUCLEAR FISSION

V. M. Kolomietz, S.V. Radionov

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

The general problem of dissipation in macroscopic large-amplitude collective motion and its relation to the energy
diffusion of the intrinsic degrees of freedom of a nucleus is studied. By applying the cranking approach to the nuclear
many-body system, a set of coupled dynamical equations for the collective classical variables and the quantum
mechanical occupancies of the intrinsic nuclear states is derived. Different dynamical regimes of the intrinsic nuclear
motion and its consequences on time properties of the collective dissipation are discussed. The approach is applied to

the descent of the nucleus from the fission barrier.
1. Introduction

Nuclear large-scale dynamics (nuclear fission,
heavy ion collisions etc.) is a good probe for the
investigation of the complex time evolution of finite
Fermi systems. The conceptual question is here how
collective modes of motion appear in a system with
many degrees of freedom and how they interact with
all other intrinsic modes. Nuclear collective
dynamics can be studied by using the concept of
macroscopic motion for a few collective degrees of
freedom, which are chosen to describe gross
properties of the nucleus [1 - 3]. Such a kind of
approach is acceptable for a slow collective motion
where the fast intrinsic degrees of freedom exert
forces on the collective variables leading to a
transport equation. The crucial point of such an
approach is separation of the total energy of a
system into the potential energy, collective kinetic
energy and dissipation energy. Moreover the
dissipation of collective motion implies fluctuations
in the corresponding collective variables, as follows
from the fluctuation-dissipation theorem [4].

Dissipation of the nuclear collective energy
reveals itself, for instance, as the non-zero
contribution of the internucleonic collisions to the
widths of the nuclear giant multipole resonances. On
the other hand, the experimental observation of the
finite variance of the kinetic energy of the fission
fragments manifests the fact that the fluctuations
have to be also associated with the collective
variables. Both the dissipation and the fluctuations
can be described by the introduction of friction and
random forces, related to each other by the
fluctuation-dissipation theorem. In this respect, the
Fokker - Planck or Langevin approaches can be used
to study the nuclear large-scale dynamics. In
general, basic equations of motion for the
macroscopic  parameters, describing complex
dynamics of the many-body systems like nuclei,
have a non-Markovian structure. One of the first
considerations of memory (non-Markovian) effects
for classical liquids can be found in Ref. [5]. For the
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dynamics of nuclei, memory effects have been
investigated within different approaches. In this
respect, one can mention the dissipative diabatic
model [6], the linear response theory [3] and the
fluid dynamic approach [7, 8]. In this paper, we
would like to apply the non-Markovian dynamics to
the study of the nuclear fission characteristics and
clarify the role of the fluctuation and memory effects
in the descent of the nucleus from the fission barrier
to the scission point.

The plan of the paper is as follows. In Sect. 2, we
derive the non-Markovian Langevin equation of
motion for the nuclear shape variables starting from
the collisional kinetic equation. Sect. 3 is devoted to
details of the numerical determination of the saddle—
to—scission time and in presence of the memory
effects and the random force for the descent of the
nucleus from the barrier to the scission point.
Summary and conclusions are given in Sect. 4.

2. Nuclear many-body system

We assume that dynamics of nuclear many body
system can be described as a coupled motion of the
macroscopic  collective modes and intrinsic
nucleonic ones. Slow collective modes of the
nuclear large-amplitude motion are treated in terms
of a set of classical time-dependent variables n,
while the fast intrinsic modes are described quantum
mechanically through the time evolution of
occupancies of nucleonic many body states.

The intrinsic dynamics can be determined
through the Liouville equation for the density matrix
operator p,

op .-
ZLiiLp=0, 1
o Hikp (D

where L is the Liouville operator defined in terms
of the commutator, Lp = [ﬁ, ,5]/ fi, of the nuclear

many body Hamiltonian H .
Using Zwanzig’s projection technique [9] and a
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basis of adiabatic eigenenergies E and

n

eigenfunctions ¥,

, of the nuclear many body

Hamiltonian [10], we can get dynamical equations
for a non-diagonal part of the density matrix,

pun ) =i [lsa®) ZEEL =N (5),(5) - (91000 (9], @
and its diagonal part,
a —
)2 X j 50, (5) 3" (O, (9 L=, ) 5], )

Here, ,, =(E,—E,)/# and matrix elements

= ‘6|:| / 8qi‘ measure the coupling between the

quantum nucleonic and the macroscopic collective
subsystems.

op(E, 1) o — 5|
Q(E)T:;sijqi(t)_[odsexp[ niT, }/u(q

where s; and T'; are, correspondingly, the strengths

and widths of the energy distributions of the
ensemble averaged coupling matrix elements h

Yij (qft], q[s]) are the

measuring how strong the coupling matrix elements
correlate at different collective deformation
parameters q[t] and q[s], and Q(E)is the nuclear

many body level density at excitation energy E .

i,mn >

correlation  functions

2.1. Energy rate

In order to define properly dynamics of the
classical collective parameters ((t) within the
cranking approach, one has to consider total energy
of the nuclear many body system, which can be
written as

3(t) = Eg (@) +Tr{H(a[thp(1)}, (%)

Differentiating over time both sides of Eq. (6), we
get

TG ay(G) e

Y E, L Z%Z(aqu P (©)

nn

The first term in the right-hand side of Eq. (6)
describes a change of the collective potential energy.
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To proceed further, we use a random matrix
theory developed in our previous paper [10] for the
case of a single collective coordinate. We omit all
intermediate steps and give a basic diffusion-like
equation of motion for the ensemble averaged
occupancies p(E, t) of the many body states

E=E,:

(D, (9~ [mE)a” EEE S)}, @)

The second term depends on the non—diagonal
component of the density matrix p,,(t). Its time
evolution is caused by the virtual transitions among
adiabatic states of the nuclear many-body
Hamiltonian. We believe that such a term is a
microscopic source for the appearance of the
collective kinetic energy:

[ dtjvm iZqZB.,(q)q,, (7)

where B; is a collective mass parameter,
B _Zhl nm''j,mn Oy pmm pnn]' (8)

It can be easily shown that the third and fourths
terms in the energy-rate expression (6) can be

combined as d(Z:n E,p,,)/dt and that is the rate of

change of the intrinsic nucleonic energy
E" :ZnEnpm. The energy E® of the intrinsic

excitations is defined by the real transitions between
the adiabatic many body states of the system and we
represent the corresponding contribution to the rate
of change of the total energy of the nuclear system
as follows

dx 1 dE
(a]real __IZ () | dt (9)

where Mq is the total number of the collective

degrees of freedom.
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Collecting Egs. (8) and (10), one obtains for (7),

[‘l—fj = 3 4OF (@4,

(10)

where quantities F

. mean forces acting on the

collective subsystem given by
oE :
Fi:ZBijqﬁ—ng_idi. (11)
; g M, q dt

2.2. Equations of motion for the collective parameters

To get M, equations of motion for M

q q

unknown collective parameters 0, we assume that
all partial contributions to the energy rate (11) are

]

It should be pointed out that Eq. (14) describes
the ensemble averaged collective dynamics, i. e.,
averaged over many different random realizations of
the intrinsic nucleonic subsystem. In this way, of
course, we loose information about the quantum
fluctuations of the intrinsic degrees of freedom of
the nuclear many body system which, in principle,
may be important. In order to try to take them into
account somehow, we introduce a phenomenological

ZB [q]d aEgs
ildld; =—
j ] ] 63(]

3. Numerical calculations

Now we turn to the numerical determination of
nuclear fission’s characteristics. We study the
symmetric fission of highly excited heavy nuclei
whose space shape may be obtained by rotation of

some profile function Y?’(z) around z-axis. It is

considered a 2-parametric family of the Lorentz
shapes [2]:

Y (2)=(2" -{(@ + )N, (17)

where the multiplier Q =—¢;({;/5+¢7) guarantees

the conservation of the nuclear volume. Here, all
quantities of the length dimension are expressed in
units of the radius R, of the spherical equal-volume

nucleus. The parameter £, in Eq.(17) defines an
elongation of the figure, while ¢, is responsible for its
neck. Thus, in the case of §,=c we have a
spheroidal shape and for c < ¢, <0 the neck appears.
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0. = — E?EEEEL — EEE_ ‘ ' _ |t - t'| T\ l
2. Bylald; = &, ;Tjodt exp{ hmj}ij(q[tl, qltDa; ().

— Sl ! ' _u 17 (4 '
EIN exp( T, }Yu(q[t], TG, () + & (1)

zero [1],
F=0i=1.,M,. (12)
Thus, the collective dynamics satisfy the
following set of equations
oE 1 1 dE
B.[ql =—>—— ——
; e A S

One can demonstrate that for the constant-
temperature level density, Q(E) = const-exp(E/T),

where T is the temperature of the nucleus, we
obtain a closed set of equations of motion for the
collective parameters:

(14)

stochastic force term, ¢&(t), into the collective

equations of motion (14) and requiring that the
fluctuation-dissipation theorem is hold,

t-t'
<§| (t)fj (t')>:TSinij(q[t]a q[t'])exp(—%} (15)

ij

With this, the collective dynamics gets a form of the
non-Markovian Langevin equations of motion

(16)

The adiabatic collective potential energy of
deformation E(q) were taken from Ref. [2]. The

equations of motion (15), (16) were solved
numerically with the help of the simplest Euler
method with the initial conditions corresponding to
the saddle-point deformation and the initial kinetic
energy Eu o =1MeV (initial neck velocity

¢, =0). The numerical calculations were performed

for the symmetric fission of the nucleus *°U at
temperature T =2 MeV . We define the scission line
from the condition of the instability of the nuclear
shape with respect to any variations of the neck
radius:

O*Eg(q) _
or?

neck

where 1, =&, /(&3 /5+¢&;) is the neck radius.

We considered a time of the nuclear descent from
the saddle point to the scission (18). The total

0, (18)
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number of N =2-10" (D), g, (1),
generated by the different random realizations of the
random forces & (t), were taken into consideration

trajectories

in order to define the dynamic path of the system
(15), (16). To simplify the problem and clarify the
role of the random force in the non-Markovian
dynamics of the system, we stopped running
trajectories ¢,(t), ¢,(t) when they cross the line

Newt

Moo ($05C,) = T, where 15" is the neck radius’

"eck

0,75+

0,50+

0,25 ; .
0 2 4
t(10-21s)
Fig. 1. Typical Langevin (solid line) and Newtonian

(dashed line) trajectories of the neck radius r,., (t) of the

system (15), (16). Horizontal line is the value of rhe"

derived from the Newtonian dynamics.

A histogram of the distribution p of the saddle-
to-scission times t, is given in Fig. 2. We found

that the most probable and mean value of the descent
time are significantly smaller than the Newtonian
estimation of t, shown by a vertical line. In fact,

the random force speeds up the process of descent
from the fission barrier. Indeed, the action of a
random force, in some sense, "shakes loose" the
system giving rise to a smaller time of motion
between two given points comparing to the
corresponding time for the unperturbed of the
system. It should be pointed out that this is hold both
for Markovian Langevin dynamics (it may be
demonstrated analytically for some quite simple
models) and non-Markovian Langevin dynamics.
The last feature is demonstrated in Fig. 3, where the

mean value (t) of the descent time is plotted versus

the relaxation time z, for the Langevin (solid line)

and Newtonian (dashed line) [11] paths of the
system.

As seen in Fig. 3, the difference between the two
non-Markovian calculations of the mean saddle-to-

SAEPHA ®I3UKA TA EHEPTETUKA Ne3 (25) 2008

value determined from the Newtonian non-
Markovian dynamics ( i. e., when the stochastic
terms are absent in Egs. (15), (16)).

In Fig. 1, we show the Langevin (solid line) and
Newtonian (dashed line) dynamic trajectories of the

neck radius r_, (t). Horizontal line in the figure

gives the scission value of the neck radius I
derived from the Newtonian calculation.

0,6
0,4

0,2

0,0

0 2 4 6
tso(10°21s)

Fig. 2. Histogram of a probability density p of the
descent times t_. for the non-Markovian Langevin
dynamics  (15), (16) at the relaxation time
r,=h/I"=2-10""s , when the size of memory effects is

SC

quite small. The vertical line gives the Newtonian
estimation for the descent time.

<ts>(1021s)

0 T T T T ]

Fig. 3. The mean value of the descent time (tsc> for the

non-Markovian Langevin dynamics (15), (16) versus the
relaxation time 7, is shown by solid line. The Newtonian

calculation of the descent time is given by the dashed line.

scission time grows with the relaxation time. This
fact may be explained by the correlation properties
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of the random forces in the non-Markovian
Langevin equations, see Eq. (15). As can be seen
from Eq. (15), the increase of the relaxation time 7,

amplifies the correlation in the collective
coordinates ¢,(t), ¢,(t) at two subsequent moments

of time t and t+At. As a result, one might expect
that a quite big change, occurred for the
coordinates¢g,, ¢, at time t, will give rise to a
sufficiently big change for ¢,, ¢, even at the next
time step t+At. This tendency will be stronger as
far as the relaxation time 7, grows up. Therefore, in

average the system will reach the scission faster as
compared to the non-Markovian motion of the
system.

4. Summary and Conclusions

Within non-Markovian Langeven approach, we
have demonstrated a consistent description of
nuclear large-amplitude dynamics, including the
memory effects and the random force. We have
averaged the intrinsic nucleonic dynamics (4) over
suitably chosen statistics of the randomly distributed
coupling matrix elements and the energy spacings.
Owing to this procedure, we have derived the
diffusion-like equation of motion for the smeared
occupancies p(E, t) of the adiabatic many body

states. Note that the obtained equation of motion for
p(E, t) is the non-Markovian one, where the

memory effects depend on the width of the
randomly distributed matrix elements.

Applying the ensemble averaging procedure, we
have also derived the collective mass parameter and
the internal energy rate. Finally, we derive a set of
coupled dynamic equations for the macroscopic
variables which take into consideration the time
variation of the occupancies of the intrinsic nuclear
states.  Following the fluctuation-dissipation
theorem, we have incorporated also the relevant
random force into the macroscopic equations of
motion.

The main contribution to the rate of dissipation
energy is due to the jump probabilities leading to a
rate of dissipation which depends essentially on the
total energy of the nucleus. The final result shows
that a time irreversible energy exchange between the
collective and internal degrees of freedom is
possible when the level density increases with
energy. We have applied our approach to the
description of the descant of the nucleus from the
fission barrier. We show that the random force
accelerate significantly the process of descent from
the barrier for both the Markovian and non—
Markovian Langevin dynamics. We have observed
that the difference between the two non—Markovian
calculations (see Fig. 3) of the mean saddle-to-
scission time grows with the relaxation time. This
fact may be explained by the correlation properties
of the random force in the non-Markovian Langevin
equations.
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HE-MAPKOBCBKUI PYX BEJIUKOI AMILUNITYAU TA MOJLI SAJAEP

B. M. Kogowmieun, C. B. Pagionos

JlociimKyeTbest 3aranpHa npoodiieMa AUCHUMALii B MAKpPOCKOIIIYHOMY KOJEKTUBHOMY PYCi 3 BEJIMKHMH aMILTITyJaMU
Ta ii BimHOIIEHHs a0 qudy3ii eHeprii BHYTPIMIHIX CTYMIHEH BUIBHOCTI sapa. 3acTOCOBYIOUM cranking-HaOIMKEHHS 0
AepHol 0araTo4acTHHKOBOI CHCTEMH, MU OJIEP)KYEMO CHCTEMY 3B’SI3aHHMX DIBHSHB JUIS KOJEKTUBHHAX 3MIHHUX Ta
3acesIeHOCTel BHYTPIIIHIX siiepHUX cTaHiB. OOroBOPIOIOTHCS Pi3HI JUHAMIUHI PEKMMH BHYTPIIIHBOTO SIAEPHOTO PYXY
Ta IX BIUIMB Ha BJIACTHUBOCTI JWCHIAILIi B KOJIEKTUBHOMY pyci. ITiIXix 3acTOCOBaHO 10 OMHCY CITyCKy siapa 3 Oap’epa

MOJTLTY.

20

SJIEPHA ®I3UKA TA EHEPTETHUKA Ne3 (25) 2008



NON-MARKOVIAN LARGE-AMPLITUDE MOTION

HE-MAPKOBCKOE JIBUXEHHUE BOJbIION AMILUIMTYAbI U JEJEHUE SITEP
B. M. Kosomuen, C. B. Paguonosn

Hccnenyercss obmas mpobieMa AWMCCHIAIMM B MaKpPOCKONMMYECKOM KOJJIEKTUBHOM JIBHDKEHMH C OOJBIIMMH
aMIUIMTYJ]aMU U ee OTHOIeHne K 1u(y3un SHEpriuy BHYTPEHHHX cTeneHer supa. IlpuMensist cranking-npubiikenne
K SICPHOM MHOTOYaCTUYHON CHCTEME, MBI MTOTy9aeM CHCTEMY CBSI3aHHBIX yPaBHEHHH AJISI KOJJIEKTUBHBIX IEPEMEHHBIX
Y 3aCEeJICHHOCTEW BHYTPEHHUX SIEPHBIX COCTOSHUH. OOCY)KIAIOTCS pasIUYHbIe TUHAMHUYECKHE PEXUMbBI BHYTPEHHETO
SNEPHOTO JIBIKCHMSI W WX BIMSHHE HAa CBOWCTBA JIUCCHUINALMK B KOJJIEKTUBHOM ABMXEHHH. Iloaxon mpuMeHsieTcs K
OIIMCAHUIO CITyCKa sifipa ¢ Oapbepa JeleHusl.
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