ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Controlled heating of a cylindrical plasma using the features of an exceptional point
A. V. Hlushchenko1,*, Î. L. Andrieieva1, V. I. Tkachenko1,2
1 National Science Center "Kharkiv Institute of Physics and Technology", National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2 V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
*Corresponding author. E-mail address:
glushchenko.ant@gmail.com
Abstract: The paper proposes a method of controlled heating of a cylindrical plasma using the features of the Exceptional point. It is shown that the coupled system of plasma and dielectric waveguides is capable of generating exceptional points where their dispersion curves cross. By controlling the connection (distance) between the waveguides, it is possible to control the distribution of the electromagnetic field, both in the plasma and in the dielectric waveguides around the exceptional point. It is also shown that in the presence of dissipative losses in the plasma, the degree of heating of the plasma waveguide can be controlled by tuning the distribution and intensity of the exciting electromagnetic field in the coupled waveguide system, which gives a potential advantage among other methods of plasma heating. The results obtained in the work can be considered as an example of a new method of controlled plasma heating, which can be used to overcome the existing problems of controlled thermonuclear fusion.
Keywords: exceptional point, eigenmodes, plasma waveguide, dissipative losses.
References:1. Scientific Community of Physicists of the USSR. 1950 - 1960s. Documents, Memoirs, Research. V. P. Vizgin, A. V. Kessenikh (eds.) (St. Petersburg: Russian Christian Humanitarian Academy, 2005) 720 p. (Rus) Google books
2. B.D. Bondarenko. The role of O. A. Lavrentiev in Posing the Question and Initiating Research on Controlled Thermonuclear Fusion in the USSR. Uspekhi Fizicheskikh Nauk 171 (2001) 886. (Rus) https://doi.org/10.3367/UFNr.0171.200108q.0886
3. A. Artsimovich. Controlled Thermonuclear Reactions (Moskva: Fizmatlit, 1961) 467 p. (Rus)
4. A.V. Melnikov. Applied and fundamental aspects of fusion science. Nature Phys. 12 (2016) 386. https://doi.org/10.1038/nphys3759
5 S.C. Cowley. The quest for fusion power. Nature Phys. 12 (2016) 384. https://doi.org/10.1038/nphys3719
6. J. Knaster, A. Moeslang, T. Muroga. Materials research for fusion. Nature Phys. 12 (2016) 424. https://doi.org/10.1038/nphys3735
7. D. Stork et al. Materials R&D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group. Fusion Eng. Des. 89 (2014) 1586. https://doi.org/10.1016/j.fusengdes.2013.11.007
8. O. Crofts, J. Harman. Maintenance duration estimate for a DEMO fusion power plant, based on the EFDA WP12 pre-conceptual studies. Fusion Eng. Des. 89 (2014) 2383. https://doi.org/10.1016/j.fusengdes.2014.01.038
9. A. Loving et al. Pre-conceptual design assessment of DEMO remote maintenance. Fusion Eng. Des. 89 (2014) 2246. https://doi.org/10.1016/j.fusengdes.2014.04.082
10. Physical Encyclopedia. Vol. 3. A. M. Prokhorov (editor-in-chief). Magnetoplasma - Poynting Theorem (Moskva: Bolshaya Rossiyskaya Entsiklopediya, 1992) 669 p. (Rus)
11. W. Li, J.G. Valentine. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics 6 (2017) 177. https://doi.org/10.1515/nanoph-2015-0154
12. C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics 8 (2014) 95. https://doi.org/10.1038/nphoton.2013.238
13. K. Appavoo et al. Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. Nano Lett. 14 (2014) 1127. https://doi.org/10.1021/nl4044828
14. G. Baffou, R. Quidant. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser & Photonics Rev. 7 (2013) 171. https://doi.org/10.1002/lpor.201200003
15. Z.J. Coppens et al. Probing and controlling photothermal heat generation in plasmonic nanostructures. Nano Lett. 13 (2013) 1023. https://doi.org/10.1021/nl304208s
16. C. Loo et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5 (2005) 709. https://doi.org/10.1021/nl050127s
17. O. Neumann et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl. Acad. Sci. 110 (2013) 11677. https://doi.org/10.1073/pnas.1310131110
18. S.V. Boriskina, H. Ghasemi, G. Chen. Plasmonic materials for energy: From physics to applications. Mater. Today 16 (2013) 375. https://doi.org/10.1016/j.mattod.2013.09.003
19. W.D. Heiss. The physics of exceptional points. J. Phys. A: Math. Theor. 45 (2012) 444016. https://doi.org/10.1088/1751-8113/45/44/444016
20. M.-A. Miri, A. Alù. Exceptional points in optics and photonics. Science 363 (2019) eaar7709. https://doi.org/10.1126/science.aar7709
21. V.P. Shestopalov. Morse Critical Points of Dispersion Equations (Kyiv: Naukova Dumka, 1992) 240 p. (Rus)
22. N. Ashkroft, N. Mermin. Solid State Physics. In 2 vol. (Moskva: Mir, 1979). (Rus)
23. T.P. White et al. Multipole method for microstructured optical fibers. I. Formulation. J. of the Optical Society of America B 19 (2002) 2322. https://doi.org/10.1364/JOSAB.19.002322
24. A.V. Hlushchenko. Multimode parity-time symmetry and loss compensation in coupled waveguides with loss and gain. Phys. Rev. A 104 (2021) 013507. https://doi.org/10.1103/PhysRevA.104.013507
25. V. Granatstein, S. Schlessinger, A. Vigants. The open plasmaguide in extremes of magnetic field. IEEE Trans. Antennas Propag. 11 (1963) 489. https://doi.org/10.1109/TAP.1963.1138070