![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Semiclassical approach to the low-lying collective excitations in nuclei
A. M. Gzhebinsky, A. G. Magner, S. N. Fedotkin
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: For low-lying collective excitations we derived the inertia within the semiclassical Gutzwiller approach to the one-body Green's function at lowest orders in ħ. The excitation energies, reduced probabilities and energy-weighted sum rules are in agreement with main features of the experimental data.
References:1. Bohr A., Mottelson B. Nuclear Structure. Vol. 2: Nuclear deformations (New York: Benjamin Inc., 1975) 748 p.
2. Migdal A. B. Theory of Finite Fermi Systems and Applications to the Atomic Nuclei (New York: Wiley, 1967; New edition in Russian, 1983) 430 p.
3. Hofmann H. A quantal transport theory for nuclear collective motion: The merits of a locally harmonic approximation. Phys. Rep. 284 (1997) 137. https://doi.org/10.1016/S0370-1573(97)00006-9
4. Strutinsky V. M., Magner A. G. Quasiclassical theory of nuclear shell structure. Sov. J. Part. Nucl. 7 (1976) 356.
5. Gutzwiller M. Chaos in Classical and Quantum Mechanics (New York: Springer-Verlag, 1990) 432 p. https://doi.org/10.1007/978-1-4612-0983-6
6. Brack M., Bhaduri R. K. Frontiers in Physics: Semiclassical Physics (Boulder: Westview Press, 2003) 458 p.
7. Magner A. G., Vydrug-Vlasenko S. M., Hofmann H. Gross-shell effects in nuclear response functions. Nucl. Phys. A 524 (1991) 31. https://doi.org/10.1016/0375-9474(91)90015-X
8. Magner A. G., Gzhebinsky A. M., Fedotkin S. N. Semiclassical inertia of nuclear collective dynamics. Phys. At. Nucl. 70 (2007) 647. https://doi.org/10.1134/S1063778807040059
9. Gzhebinsky A. M., Magner A. G., Fedotkin S. N. Low-lying collective excitations of nuclei as a semiclassical response. Phys. Rev. C 76 (2007) 064315. https://doi.org/10.1103/PhysRevC.76.064315
10. Ivanyuk F. A., Hofmann H., Pashkevich V. V., Yamaji J. Transport coefficients for shape degrees in terms of Cassini ovaloids. Phys. Rev. C 55 (1997) 1730. https://doi.org/10.1103/PhysRevC.55.1730
11. Magner A. G., Gzhebinsky A. M., Fedotkin S. N. Shell-srtucture inertia for slow collective motion. Phys. At. Nucl. 70 (2007) 1859. https://doi.org/10.1134/S1063778807110051
12. Magner A. G., Gzhebinsky A. M., Fedotkin S. N. Shells, orbits and transport coefficients of the nuclear collective dynamics. Scientific Papers of the Institute for Nuclear Research 6 (2005) 7. https://jnpae.kinr.kyiv.ua/06.1/Articles_PDF/jnpae-2005-06-1-007.pdf
13. Kolomietz V. M., Kondratjev V. N. Response function and kinetic coefficients of chaotic systems. Z. Phys. A 344 (1992) 125. https://doi.org/10.1007/BF01291695
14. Wilkinson M. A semiclassical sum rule for matrix elements of classically chaotic systems. J. Phys. A: Math. Gen. 20 (1987) 2415. https://doi.org/10.1088/0305-4470/20/9/028
15. Raman S., Nestor Jr. C. W., Tikkanen P. Transition probability from the ground to the first-excited 2+ state of even-even nuclides. At. Data Nucl. Data Tables 78 (2001) 1. https://doi.org/10.1006/adnd.2001.0858
16. Kibedi T., Spear R. H. Reduced electric-octupole transition probabilities B(E3;0+1 → 3-1) - an update. At. Data Nucl. Data Tables 80 (2002) 35. https://doi.org/10.1006/adnd.2001.0871