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For low-lying collective excitations we derived the inertia within the semiclassical Gutzwiller approach to the one-

body Green’s function at lowest orders in . The excitation energies, reduced probabilities and energy-weighted sum 
rules are in agreement with main features of the experimental data. 
 

Introduction 
 
The collective dynamics of complex nuclei at low 

excitation energies, such as the vibration modes, can 
be described within several theoretical approaches 
[1, 2]. One of the most powerful tools for its 
description is based on the response function theory 
[1, 3]. The collective variables are introduced 
explicitly as deformation parameters of a mean 
single-particle field. In [3], the nuclear collective 
excitations are parametrized in terms of the transport 
coefficients like the stiffness, the inertia, and the 
friction parameters through the adequate collective 
response functions. 

The extended Gutzwiller path-integral approach 
(EGA) [4 - 6], so successful for a semiclassical 
description of the nuclear shell structure [5, 6], was 
applied to the response functions of collective 
dynamics in [7]. At a few lowest orders in  like the 
extended Thomas - Fermi approach (ETF), it would 
be worth to exploit also the Strutinsky procedure of 
averaging of the shell correction method (SCM) for 
calculations of the smooth transport coefficients for 
slow collective motion. 

The main scope of this paper is to derive the 
explicit analytical expressions of a smooth inertia at 
leading orders in  for the low-lying nuclear 
collective excitations within the EGA by using more 
traditional way than in [8] in order to study also their 
reduced transition probabilities and contributions 
into the energy-weighted sum rule (EWSR) [1]. The 
basic key point of these derivations is to show 
analytically a significant enhancement of the ETF 
inertia with respect to that of the hydrodynamical 
(irrotational-flow liquid drop) model. 

 

Nuclear response and transport coefficients 
 

Many-body collective excitations are 
conveniently described in terms of the nuclear  

response to an external perturbation 
ext

ext Q̂ i tV q e ω
ω

−= , where extqω  is a vibration 
amplitude of the frequencyω , and Q̂  is one-body 
operator. Its quantal average variations Q̂ tδ 〈 〉  at 
time t  can be calculated through the Fourier 
transform Q̂ ωδ 〈 〉  within the linear response theory 
[3], 

 
ext

coll 0
ˆ ˆQ ( ) Q L

Lq r Yω ωδ χ ω〈 〉 = − , = ,           (1) 
 
where coll ( )χ ω  is the collective response function. 
For the axially symmetric multipole vibrations of the 
nuclear surface with the radius ( )R θ  near the 
spherical shape in the spherical coordinates r θ ϕ, , , 
one writes 0( ) [1 ( ) ( )]LR R q t Yθ θ= + , ( ) i tq t q e ω

ω
−=  

is the time-dependent deformation parameter. The 
consistency condition, 
 

Q̂ qω ωδ κ δ〈 〉 = ,                         (2) 
 
relates the variations of nuclear potential and particle 
density, Vδ δ ρ∝ , κ  is the coupling constant, qωδ  
is the variation of deformation parameter [1, 3, 9]. 

For one dominating separate peak in the strength 
function, collIm ( )χ ω , in the low energy region, we 
can approximate the collective response function by 
the harmonic oscillator form [3, 9, 10]: 

 

coll 2( ) ,
M i C

κχ ω
ω γω

≈
− − +

               (3) 

 
with transport coefficients, such as the inertia M , 
the friction γ , and the stiffness C . The inertia M  
is expressed in terms of the one-body Green function 
G , 

 
2

2
1 2 1 1 2 2 1 2 1 22

ˆ ˆd ( ) d d Q ( ) Q ( ) Im ( ) Re ( )
0

M n G Gε ε ε ε
ε

∞
∂

∝ , , , ,
∂∫ ∫ ∫r r r r r r r r ,                      (4) 
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where ( )n ε  is the Fermi occupation numbers at the 
energy ε  for temperature T , ( )n ε =  

1{1 exp[( ) ]}Tε λ −= + − / , λ  is the chemical 
potential. Finally, with the strength function 

( )LS ω for the first lowest peak, we may evaluate the 
contribution of the low-lying collective state into the 
sum rule 
 

2
,

0

d ( )L LS Sω ω ω
∞

= ∫ ,   coll
1( ) Im ( )LS ω χ ω
π

= − ,  

 
0, 1, ...= .                        (5) 
 

Semiclassical approach 
 
We use now in Eq. (4) the semiclassical 

expansion of Green’s function G  derived by 
Gutzwiller [4, 5] from the quantum path-integral 
propagator, 

 

1 2 1 2( ) ( )G Gα
α

ε ε, , = , , =∑r r r r  

 

1 2 1 2( )exp ( )
2

i iA Sα α α
α

πε ε µ
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= , , , , − .∑ r r r r   (6) 

 
The index α  covers all classical paths inside the 

potential well, which connect the two spatial points 
1r  and 2r  for a given energy ε  (Fig. 1). The Sα  is 

the classical action along a trajectory α , and αµ  is 
related to the Maslov index of the path α . The 
oscillation amplitude Aα  in Eq. (6) is determined by 
the classical trajectory stability. 

 
Fig. 1. The trajectory 0α  from the initial 1r  to the final 

2r  point; the spherical coordinate system with the polar 
axis z and the center O is shown; dashed line denotes 
another trajectory 1α  with one mirror reflection from the 
spherical boundary. 

Among all classical trajectories α , we may 
single out the straight line path 0α  from 1r  to 2r  
without reflections from the potential well edge. For 
the Green’s function G  [Eq. (6)] one has then a 
separation, 0 oscG G Gα= + , which leads to the 
corresponding splitting of the slightly averaged level 
density, ( )g ε , into a smooth part of the extended 
Thomas - Fermi model ETF ( )g ε , and its shell 
structure correction osc ( )g ε , ETF( ) ( )g gε ε= +  

osc ( )g ε+  [5, 6]. The ETF level density ETF ( )g ε  
includes the surface and curvature  corrections to 
the volume part of the Thomas - Fermi model 

TF ( )g ε . The periodic orbit theory (POT) sum over 
the periodic orbits, osc ( )g ε , describes the shell 
effects in the single-particle spectrum.  

The averaging over phase-space variables of the 
inertia, which includes Strutinsky averaging over 
energy spectrum, leads to the nearly local 
approximation 1 2( ) 1F FS k Lα αε, , / =r r , 

2 2 2F Fk mε = / , in which the only short 
trajectoriesα  with small lengths Lα  alive, as shown 
in [9, 11]. The Fermi momentum Fk  in units of  is 
determined approximately by the well-known ETF 
particle number conservation for the edge-like 
potentials [6] 

 
3

ETF
8( )4 d ( )

9
0

Fk RA gε ε
π

∞
= ≈ −∫  

 
2 8( )

3
F

F
k Rk R
π

− + .                          (7) 

 
In that approach, the diffuseness parameter for 

mean field potential is small with respect to the 
nuclear radius as 1/ 3A−  at large enough particle 
numbers A  in nucleus. Shell fluctuations are owing 
to longer trajectories (see 1α  as example in Fig. 1) 
of periodic orbits for smaller Gaussian averaging 
parameter Γ , 1/ 3/F AΓ Ω ε∼ , in the case of 
non-local contributions, 1Fk Lα , see [9, 12]. 

Within the nearly local approximation, the 
contribution into the smooth transport coefficients 
is coming from the first component of Green’s 
function 0Gα , corresponding to the short trajectory 

0α  (see Fig. 1) with a small relatively action 

1 2( )FSα ε, ,r r , which can be reduced approxi-
mately to a simple analytical form for free particle 
motion, 
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( )0 1 2 0 1 2 2( ) ( ) exp
2

mG G i k s
sα ε ε

π
, , ≈ , , = − ,r r r r

 

1 2 2

2| | ms k ε
= − , = .r r             (8) 

 

Finally, for the leading term in  in the 
semiclassical inertia in units of that for irrotational 
flow of the hydrodynamical model, by using (4) and 
(8) one obtains 

 
2 4

0

( ) ,v F

irr F s

b k RM K R A
M b r A

ρ
ε

⎛ ⎞
∝ ∝⎜ ⎟

⎝ ⎠
  

 

0 1/ 3

6
1 sb

K A
ρ ρ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
.                       (9) 

 

Here, ρ  is the particle density accounting for a 
semiclassical surface correction to the value 0ρ  = 
= 0.16 fm 3−  of the infinite nuclear matter. Other 
notations are used for standard nuclear parameters, 
namely, the energy of particle separation from nuclear 
matter 16vb =  MeV, the incompressibility modulus 

220K =  MeV, the energy surface constant sb =  

= 18 MeV, ( )1/ 3
0 03/ 4r π ρ= . We found that the 

inertia value is much larger than the irrotational flow 
one by factor of about irr/ 4 7M M ≈ −  for the 
quadrupole vibrations and similarly, for octupole 
modes, irr/ 4 9M M ≈ −  for particle numbers 

= 100 - 200A . Smaller enhancement for the 
quadrupole excitations was found in [13] within the 
stohastic response function approach [14] without 
account for the consistency condition (2). Notice that 
the collective-consistent inertia parameter M , see 
(9), depends on the diffuseness of the mean-field 
potential edge through the phenomenological energy 
surface constant sb , see [9] and [25, 26] therein. 
Other contributions of the finite nuclear diffuseness 
are expected to be negligibly small for heavy enough 
nuclei within our approach because of the double 
integration over the nuclear volume in (4). The 
stiffness is approximated by the standard sum of the 
liquid drop surface value and Coulomb correction [1] 

 
( ) ( ) ,S coul
LD LDC C C≈ +   

 

( ) ( )( ) 2
2

0

1 2
4

S s
LD

bC L L R
rπ

= − + ,  

 
2 2

( ) 3( 1) ,
2 (2 1)

coul
LD

L Z eC
L Rπ
−

= −
+

              (10) 

 

where Z e  is the nuclear charge. 

Energies, transition probabilities and sum rules 
 
The collective vibration energies were calculated 

as poles of the response function (3). The main term 
of the excitation energies differs essentially from the 
well-known results of the hydrodynamical model, 

 

1/ 3 2 / 3

2.3 1.31L
L

DC
M A A A

ω ⎛ ⎞= = − + ,⎜ ⎟
⎝ ⎠

 

 
( )

( )1
coul

LD
L L S

LD

CD D
C

= + ,    2, 3, ...L =     (11) 

 

The surface ( )1/ 3A∝  and curvature ( )2 / 3A∝  

corrections are mainly coming from the ETF relation 
(7) between particle number and semiclassical 
parameter. Parameter LD  does not depend on 
particle number, 3/ 2( ) /L s F vD b b Kε∝ , 2D ≈  
≈ 100 MeV; 3 180D ≈  MeV. 

We may analytically evaluate also the 
contribution of the first low-lying excitation into the 
energy-weighted sum rule ,1LS , see (5), (9), 

 
2

,1

, 2
L irr

L cl

S M
S M M

κ
= = ,   

 

2
, 2

3
4 ( )

LF
L cl

F

LS A R
k R
ε

π
= ,           (12) 

 
where ,L clS  is the classical sum rule independent of 
the model [1]. The enhancement of the inertia M  
corresponds to a decrease of the sum rule 
contribution as compared to that of the 
hydrodynamic model. Similarly, as for the energies 
(11), for the sum rules (12), one has the analytical 
expression for the A -dependence with the surface 
and curvature corrections, 
 

,1
1/ 3 2 / 3

,

4.6 7.91L L

L cl

S S
S A A A

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

,            (13) 

 

where LS  is the constant independent of the particle 

number, ( )2
0 /L F F s vS k b r b Kε∝ , 2 37, 6.S S≈ ≈  

The semiclassical reduced transition probabilities 
are expressed through the sum rule 0LS  of (5) and (3), 

 
2

,0( ) ( ) (2 1)scl L
e ZB EL B EL L S
A

⎛ ⎞≈ = + ≈⎜ ⎟
⎝ ⎠

 

 
2 2

(2 1)
2 L

e ZL
A M

κ
ω

⎛ ⎞≈ + ⎜ ⎟
⎝ ⎠

.                       (14) 
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From comparison of the transition probability (14) 
and the EWSR (12), one has the expected 
approximate relationship between these quantities 
and energies (11), 

 
2

,1 ,( ) (2 1) L L cl
scl

L L

S Se ZB EL L
A ω ω

⎛ ⎞≡ + =⎜ ⎟
⎝ ⎠

.     (15) 

 
The reduced probability in the single-particle units is 
really large enough, as it must be for the collective 
excitations, 

 

. .

( 2)
50 70

( 2)
scl

s p

B E
B E

≈ − ,   100 200A = − ,    (16) 

 
for quadrupole, and 50 60−  for octupole modes. 

 
Comparison with experiment data 

 
The local Thomas - Fermi approach (TF, dots) to 

the low-lying collective quadrupole excitation 
energies without surface and curvature corrections 
are compared with the experimental data [15] for 
almost spherical (even-even) nuclei in Fig. 2. The 
TF results for smooth vibration energies are 
significantly improved with respect to the 
hydrodynamic (HD, dash-dotted) behavior with the 
same stiffness but irrotational flow inertia [1]. 

 

20 40 60 80 100 120 140 160 180 200 220
0

2

4

6

8

hω
2

M
eV

A

HD

TF

ETF

ETFA

,

 

Fig. 2. Low-lying quadrupole vibration energies 2ω  vs 
particle number A . Heavy full dots are the experimental 
data [15] for almost spherical nuclei with quadrupole 
deformations 2 0.05q < , 0 0 16ρ = .  fm 3− , 16vb =  MeV, 

18sb =  MeV, 220K =  MeV, sym 60b =  MeV, other 
notations are explained in the text. 

 
More complete extended Thomas - Fermi 

approach with accounting for the surface and 
curvature corrections are shown as ETF solid curve. 
Comparison with experimental data, except for 
several doubly-closed-shell (magic) nuclei, is 
essentially improved by these corrections mainly for 
smaller particle numbers A . The reason of better 

agreement of the ETF approach, as compared to the 
HD model, vs experimental data for non-magic 
nuclei can be explained by significantly larger ETF 
inertia than that of the irrotational flow for enough 
heavy nuclei. As seen from this Figure, the explicit 
analytical asymptotics [ETFA, dashed, Eq. (11)] 
with the surface and curvature corrections 
originating from the ETF particle number 
conservation relation (7) is good enough for larger 
particle numbers.  

Figs. 3 and 4 show the semiclassical reduced 
probability (14) and the lifetime Lt ∝ 2 11/ ( ) LB EL ω +  
as compared with experimental data versus particle 
number for the quadrupole collective transitions 
( 2L = ) in the low-lying energy region for the same 
(almost spherical) nuclei. As displayed in these 
Figures, one has a rather good agreement between 
the averaged semiclassical reduced transition 
probabilities (lifetimes) and a global behavior of 
their experimental data (besides of magic nuclei). 
The surface and the curvature correction effects 
improve much our semiclassical smooth A  - 
systematic results toward the allowance data. The 
agreement between the full ETF (thin solid) and the 
analytical asymptotics ETFA (thick dashed) for 
larger particle numbers with the dominating surface 
and curvature corrections is really perfect. As seen 
from comparison of the ETF *  and ETF curves in 
Fig. 3, one may really neglect the friction 
corrections, which arise artificially from the 
averaging procedure, see [9] for details. 
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Fig. 3. The reduced probabilities ( 2)B E  for the 

transition 0 2+ +→  in standart units of 2 2e b ; full heavy 
points are experimental data [15]; ETF* accounts for the 
friction correction [9]; other notations are the same as in 
Fig. 2. 

 
Fig. 5 shows agreement of the EWSR 

contribution (12) of the low-lying quadrupole state 
into the total value with experimental data [15] by 
the same reason of enhancement of the inertia with 
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respect to the irrotational flow value, especially 
better with accounting for surface and curvature 

-corrections. See also a good EWSR analytical 
asymptotics (ETFA) for larger A . 
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Fig. 4. The lifetime 2t  vs particle number A . Notations 
are the same as in Figs. 2 and 3. 
 

 
 

Fig. 5. The quadrupole EWSR 2,1S  in units of 2,clS , see 
(12); full heavy points are 2 ( 2)B Eω  with the 
experimental vibration energies 2ω  and reduced 
probabilities ( 2)B E of [15] shown in Figs. 2 and 3, 
respectively; ETFA is given by Eq. (13); other notations 
are the same as in Fig. 2 - 4. 
 

Conclusions 
 
For low-lying nuclear collective excitations 

within a few lowest orders of the EGA in  
corresponding to the extended Thomas - Fermi 
approximation, we derived smooth inertia for the 
vibrations near a spherical shape of a mean edge-like  

field. The consistent collective ETF inertia is 
significantly larger than that of irrotational flow. 
Smooth low-lying collective vibration energies in 
almost spherical (besides of doubly-closed-shell) 
nuclei might roughly satisfy the 1A−  particle-number 
dependence with the 1/ 3A−  surface and 2 / 3A−  
curvature corrections for heavy enough nuclei, in 
contrast to the mainly 1/ 2A−  behavior predicted by 
the HD model and 1/ 3A−  dependence obtained in [8]. 
The smooth ETF energies, transition probabilities 
and EWSR differ from the statistically averaged 
experimental data for quadrupole [15] and octupole 
[16] low-lying states because of non-linear shell 
effects in the transport coefficients and coupling 
constants, see [11]. The quantum surface and 
curvature -corrections, coming mainly from the 
ETF dependence of the semiclassical parameter 

Fk R  on particle number A , are important in 
comparison with experimental data for the 
quadrupole and the octupole vibration energies and 
their EWSR contributions [9]. As the ETF inertia 
M  is significantly larger than irrM  for the 
irrotational hydrodynamic flow, our vibration 
energies, the reduced transition probabilities and 
contributions into the EWSR are basically in much 
better agreement with their experimental data than 
those found in the HD approach for large enough 
(non magic) particle numbers. We proved 
semiclassically that the reduced transition 
probabilities in Weisskopf units for the low-lying 
vibration excitations are large sufficiently in order to 
refer them to the collective states. We found simple 
analytical asymptotics for the vibration energies 
(11), the reduced probabilities (14) and the EWSR 
(13) with explicit A -dependence for larger particle 
numbers A  in good agreement with more complete 
ETF approach. As shown in [11], the shell 
corrections to the inertia and the stiffness improve 
agreement with the experimental data. 
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КВАЗІКЛАСИЧНЕ  НАБЛИЖЕННЯ  ДЛЯ  НИЗЬКОЛЕЖАЧИХ   

КОЛЕКТИВНИХ  ЗБУДЖЕНЬ  В  ЯДРАХ 
 

А. М. Гжебінський,  О. Г. Магнер,  С. М. Федоткін 
 

Отримано вираз для масового параметра у випадку низьколежачих колективних збуджень у рамках 
квазікласичного наближення Гутцвіллера до одночастинкової функції Гріна в найнижчому порядку по . 
Пораховані енергії збуджень, приведені ймовірності електромагнітних переходів і енергетично зважене 
правило сум узгоджуються з експериментальними даними. 

 
КВАЗИКЛАССИЧЕСКОЕ  ПРИБЛИЖЕНИЕ  ДЛЯ  НИЗКОЛЕЖАЩИХ 

КОЛЛЕКТИВНЫХ  ВОЗБУЖДЕНИЙ  В  ЯДРАХ  
 

А. Н. Гжебинский,  A. Г. Магнер,  С. Н. Федоткин 
 

Получено выражение для массового параметра в случае низколежащих коллективных возбуждений в рамках 
квазиклассического приближения Гутцвиллера к одночастичной функции Грина в нижайшем порядке по . 
Рассчитанные энергии возбуждения, приведенные вероятности электромагнитных переходов и энергетически 
взвешенное правило сумм находятся в согласии с экспериментальными данными. 
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