Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2007, volume 8, issue 4, pages 40-48.
Section: Nuclear Physics.
Received: 23.06.2006; Published online: 30.12.2007.
PDF Full text (en)
https://doi.org/10.15407/jnpae2007.04.040

Tunneling along γ-axis between prolate and oblate shapes

A. Ya. Dzyublik, V. V. Utyuzh

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: Using Zickendraht-Dzyublik-Filippov coordinates; we derived equation to determine the rotation and monopole + quadrupole vibrations of the nuclear ellipsoid of inertia. Apart from the monopole part, it coincides with the Bohr-Mottelson equation. However, our mass parameter turns out to be about 2.5 times larger than the hydrodynamic one. The equation is solved quasi-classically for nonrotating β rigid but γ soft nuclei, whose energy landscape has prolate and oblate minima, connected by the collective path along the γ axis. The γ tunnelling strength appears to be twice the usual one, taking place for the one-dimensional potential with two minima, separated by the barrier. The E0 transition strength between levels of the ground 0+ doublet is calculated. The results are consistent with the experiment for 74Kr.

References:

1. Petrovici A., Faessler A., Köppel Th. Z. Phys. A 314 (1983) 227. https://doi.org/10.1007/BF01879882

2. Petrovici A., Hammaren E., Schmid K. W. et al. Nucl. Phys. A 549 (1992) 352. https://doi.org/10.1016/0375-9474(92)90084-W

3. Petrovici A., Schmid K. W., Faessler A. Nucl. Phys. A 605 (1996) 290. https://doi.org/10.1016/0375-9474(96)00224-2

4. Petrovici A., Schmid K. W., Faessler A. Nucl. Phys. A 647 (1999) 197. https://doi.org/10.1016/S0375-9474(99)00004-4

5. Petrovici A., Schmid K. W., Faessler A. Nucl. Phys. A 665 (2000) 333. https://doi.org/10.1016/S0375-9474(99)00811-8

6. Matsuo M., Nakatsukasa T., Matsuyanagi K. Progr. Theor. Phys. 103 (2000) 959. https://doi.org/10.1143/PTP.103.959

7. Marumori T., Maskawa T., Sakata F., Matsuyanagi A. Progr. Theor. Phys. 64 (1980) 1294. https://doi.org/10.1143/PTP.64.1294

8. Kobayasi M., Nakatsukasa T., Matsuo M., Matsuyanagi K. Progr. Theor. Phys. 110 (2003) 65. https://doi.org/10.1143/PTP.110.65

9. Almehed D., Walet N. R. Phys. Rev. C 69 (2004) 024302. https://doi.org/10.1103/PhysRevC.69.024302

10. Kobayasi M., Nakatsukasa T., Matsuo M., Matsuyanagi K. arXiv: nucl-th/0405039 (3 Jul 2004) v2.

11. Korten W. Acta Phys. Polonica B 32 (2001) 729.

12. Bohr A., Mottelson B. Nuclear Structure. Vol. 2 (New York: Benjamin, 1974).

13. Davydov A. S. Excited States of Atomic Nuclei (Moscow: Atomizdat, 1967) (Rus).

14. Dzyublik A. Ya. Collective variables in the system of N particles. Preprint Inst. Theor. Phys. No. 71-122P (Kyiv, 1971).

15. Dzyublik A. Ya., Ovcharenko V. I., Steshenko A. I., Filippov G. F. Yad. Fiz. 15 (1972) 869.

16. Zickedraht W. J. Mat. Phys. 12 (1963) 1663.

17. Buck B., Biedenharn L. C., Cusson R. Y. Nucl. Phys. A 317 (1979) 205. https://doi.org/10.1016/0375-9474(79)90461-5

18. Filippov G. F., Ovcharenko V. I., Smirnov Yu. F. Microscopic Theory of Collective Excitations of Atomic Nuclei (Kyiv: Naukova Dumka, 1981) (Rus).

19. Vanagas V. V. Algebraic Foundations for the Microscopic Theory of the Nucleus (Moscow: Nauka, 1988) (Rus).

20. Cerkaski M., Mikhailov I. N. Ann. Phys. 223 (1993) 151. https://doi.org/10.1006/aphy.1993.1029

21. Thiamova G., Cejnar P. Nucl. Phys. A 765 (2006) 97. https://doi.org/10.1016/j.nuclphysa.2005.11.006

22. Fabre de la Ripelle M., Navarro J. Ann. Phys. 123 (1979) 185. https://doi.org/10.1016/0003-4916(79)90270-7

23. Dzyublik A. Ya., Utyuzh V. V. Ukr. Phys. J. 48 (2003) 760.

24. Pauli W. Wave Mechanics (Cambridge: MIT Press, Mass., 1973).

25. Fröman N., Fröman P. JWKB Approximation (Amsterdam: North-Holland Publishing Company, 1965).

26. Heading J. An Introduction to Phase-Integral Methods (New York: J. Wiley, 1962). https://doi.org/10.1093/qjmam/15.2.215

27. Landau L. D., Lifshitz E. M. Quantum Mechanics (Moscow: Nauka, 1974) (Rus).

28. Dzyublik A. Ya. Phys. At. Nucl. 66 (2003) 665. https://doi.org/10.1134/1.1568817

29. Davydov A. S., Rostovsky V. S. Nucl. Phys. 60 (1964) 529. https://doi.org/10.1016/0029-5582(64)90090-2

30. Feynman R. P., Leighton R. B., Sands M. The Feynman Lectures on Physics (Massachusetts: Addison-Wesley Publishing Company, inc., 1965). https://doi.org/10.1119/1.1972241