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TUNNELING ALONG 7-AXIS BETWEEN PROLATE AND OBLATE SHAPES

A. Ya. Dzyublik, V. V. Utyuzh

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

Using Zickendraht - Dzyublik - Filippov coordinates; we derived equation to determine the rotation and monopole +
quadrupole vibrations of the nuclear ellipsoid of inertia. Apart from the monopole part, it coincides with the Bohr -
Mottelson equation. However, our mass parameter turns out to be about 2.5 times larger than the hydrodynamic one.
The equation is solved quasi-classically for nonrotating  rigid but y soft nuclei, whose energy landscape has prolate
and oblate minima, connected by the collective path along the y axis. The y tunnelling strength appears to be twice the
usual one, taking place for the one-dimensional potential with two minima, separated by the barrier. The EO transition
strength between levels of the ground 0" doublet is calculated. The results are consistent with the experiment for "*Kr.

1. Introduction

The nuclei with neutron and proton numbers
N = Z =36 exhibit mixing of the prolate and oblate
shapes. Starting from oblate and prolate trial
configurations, Petrovici et al. [1 - 5] performed
variational calculations for great number of levels of
the nuclei ’Kr, "“Kr and ®*Se, which display variety
of shapes. The residual interaction is shown to
provide mixing of these configurations and repulsion
of their energies. Unfortunately, this so-called
Excited Vampir approach [1 - 5] completely ignores
the f and y vibrations of the nuclear shape.

More refined adiabatic self-consistent collective
coordinate method has been developed in [6 - 10].
As a result of cumbersome time-dependent
variational calculations there has been derived the
collective one-dimensional equation for large-
amplitude vibrations of the nuclear shape, starting
from the microscopic Hamiltonian with pairing plus
quadrupole interaction. Kobayasi et al. [10] reduced
studying of the motion of A nucleons to
consideration of the one-dimensional collective
motion in the (f, y) plane. Two minima of the
potential energy for the nuclei N~Z =36 were
shown to be connected by a collective path, going
along the valley on the potential energy surface in
the direction of the p axis with approximately
constant 5. In other words, the barrier between the
prolate and oblate shapes in the £ direction at the
point y = 0, corresponding to the spherical shape, is
much higher than that in the y direction at y = n/6,
corresponding to maximal triaxiality of the nucleus.
Similar statement about shallow potential barrier
along the y axis in "*Kr is presented in [11]. Thus, it
is the large-amplitude y motion that causes mixing of
the oblate and prolate shapes in such nuclei.

The calculations [6 - 10] are rather cumbersome.
At the same time, much more simple description is
ensured by the Bohr - Mottelson equation. However,
it has been derived in the framework of the liquid
drop model [12, 13]. As a result, the Bohr -
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Mottelson equation contains the hydrodynamic mass
parameter
3

—AmRO2 , (D)
8z

B hydr =

where A4 is the number of nucleons with mass m, and
Ry is the nuclear radius. Unfortunately, By, 1s too
small to reproduce experimental data on the
moments of inertia.

On the other hand, in papers [14, 15] the kinetic
energy operator of 4 nucleons has been expressed in
terms of 34 independent variables, which included
the Eulerian angles 6, 6,, 6; to determine the
nuclear rotation and three variables a, b, ¢ to
describe the size and shape of its inertia ellipsoid.
Very similar set of coordinates was previously
presented by Zickendraht [16], but it contained 6
redundant variables for description of intrinsic
motion. Different algebraic aspects of such approach
to the nuclear collective motion have been discussed
further in [17 - 20].

Using Zickendraht - Dzyublik - Filippov coordi-
nates [14 - 16], we shall first derive the equation,
which determines the nuclear collective motion.
Afterwards it will be applied for the quasi-classical
analysis of the prolate-oblate mixing of shapes in
even-even nuclei. We shall calculate also the electric
monopole (E0) transition strength between the levels
of the ground 0" doublet and compare the results
with the experiment [11] for "*Kr.

It is worhtnoting also the paper [21], which
analyzed prolate-oblate phase transitions by means
of the O(6) group.

2. Collective Kinetic energy

The relative motion of 4 nucleons in the center of
mass system is described by the Jacobi vectors

£.5,,...,&, . Let us introduce the rotating frame

with axes x', y', z' directed along the principal axes
of the inertia ellipsoid of the nucleus. Then the

projections of fj on these axes should satisfy the
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following conditions:
A-1 A4-1 A-1
Zg[x'giy' = Zg[x'giz' = Zéy'g[z' = 0 . (2)
i=1 i=1 i=1

Orientation of the system x', y', z" is determined
by the Euler angles 8, 6,, 6;.
Following [14, 15] we pass to the space of the

particle numbers with basis unit vectors
€,,6,,...,6, , and introduce there the vectors

- -1 _ A-1 ~ A-1

Ax' = §ix'ei s Ay' = Zéy'e s Az' = “ fiz'ei : (3)

i=1 i= i=1

Treating the constraint (2) as an orthogonality
condition of these vectors, we introduce vibrational

variables as the lengths of the vectors ;lx,’ .o [14-16] |

T=%{éz2+l§2+éz+a2 Z 0

k#A-3

az\/g, b:\/g’ c= chﬁ

In addition the rotating coordinate frame is
introduced with unit basis vectors e',e',,---,e', |,

el > pal 3
whose vectors e', ;,e', ,,e', | are directed along

A.,4,,4.. respectively, i.e.

A.=ae,,, 4

X

=bé,,, Ad.=ce,,. (5

The remaining 34-9 variables are introduced as
the generalized Euler angles [14, 15], which
determine the rotation of the coordinate system

5€ -

e',e'y,--,e', , withrespectto ¢,é,,
The kinetic energy of 4 nucleons, written in such
collective coordinates, is [14, 15]

2 2 2 2 2
i D Z Q,,,+c Z Q-

k#A-2 k#A-1

—4bc2, , , @, —4ac, , o, —4abQ, ; , 0.+ (6)

+(b2 +cz)a)f, +((12 +c2)a)y2, 4—([)2 +a2)a)ﬂ,

where c?)z{a)x,,a)y.,a)z,} is the frequency (angular
velocity) of the rotation in the real space, and Q-
denotes the frequency of rotation in the plane é,,e,.

in the abstract A-1 dimensional space.
Let us make the transformation to coordinates

P8y

a =%[l+ﬂcos(y—27r/3)} ,
b=%[l+ﬂcos(7+2ﬂ/3)], (7)

c=%[1+ﬂcosy],

Here the hyperradius is given by (see also [22])

1

p=(a2+b2+cz)3, (®)

the coordinates f and y define respectively the
deformation and asymmetry (triaxiality) of the
inertia ellipsoid. Note, that writing expressions (7)
we assumed small deformations, f <<1. More
general transformation, being valid at f ~ 1, is
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| suggested in [23].

For y = 0 the inertia ellipsoid is axially symmetric
and prolate (¢> a = b); for y = #/3 it is symmetric
and oblate (b< a = c); the value 7/6 corresponds to
its maximal asymmetry. Beyond the interval 0 <y <
7/3 we get the repeated nuclear shapes. Therefore for
single-valued correspondence of the shapes and
coordinates one should demand that the vibrational
coordinates vary in the intervals

0<p<w, 0<PB<w, 0<y<z/3. &)

If there is a uniform distribution of nucleons
inside the nucleus with sharp quadrupole surface,
then the shape of the nucleus and the inertia ellipsoid
coincide. In this case the above parameters S, y
completely coincide with those of Bohr and
Mottelson [12, 13].

The vibrational part of the kinetic energy in new
coordinates takes the form

m ) ) .2 m .2 1 2 52 1 2 2.2
T, =—(a " +b" +¢" |=— +— +— .
vibr 2( ) 2(,0 Zpﬂ 2Pﬂ7j
(10)

In the remaining part of 7 the parameters a, b, ¢
denote now the functions (7).

The Jacobian of the transformation is a product
of the collective Jacobian, depending on 8y, 6,, 65 as
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well as on the vibrational coordinate p, f5, v, and the 2 ( P 12 2
Jacobian, associated with the intrinsic rotation in the ‘ 2P
. . : L 8B(p)p° Lsm (y - 27[/3) sin (7/+27r/3) sin“y
A-1 dimensional space. The collective Jacobian is
given by o (13)
where L =7[ is the nuclear spin,

J.,=p" "B sin3ysing,. (11)
I N )
Writing down the kinetic energy in terms of the  om P4 ap op

generalized momenta p, =07 /dq and omitting the

(14)

is the kinetic energy operator for the monopole

terms, responsible for the intrinsic motion and its o
vibrations,

coupling to the collective motion, one arrives at the
following expression for the kinetic energy of the B(p) _1 mp’. (15)
nuclear collective motion 2

1 , 2, 2, When the amplitude of p vibrations is small

T :—{Pp t—=Pst 55 p7}+ compared to the equilibrium value p,, the mass

2m P pp function B (p) can be replaced by the mass
parameter

1 L L L,
+ —— g .
dmp’B* | sin’(y —2x/3) sin’(y+27/3) sin’y B= B(Po)— mpo (16)
(12)
By using standard rules of quantization [24], we Then the operator 7, -7, , coincides formally
get the corresponding operator with the kinetic energy operator of the Bohr -

, - Mottelson model [12, 13]. But now the mass
- =fp_ h /; < 1—6 n3y—}+ parameter B > By Specifically, for an uniform

2B(p) ,3 op 5ﬁ ﬂ sin3y 67 oy nucleus, confined by a quadrupole shape, defined in
| the frame x’, ', z' by the radius [12, 13]

A

1 ' ' L Sin ' r 1 r
R(0'¢) =R, {1 + feosyY, (00 + ﬂfy(mw )Y, (09 ))} , (17)
|
the parameter p, is related to the radius Ry by Thus,
P = A<r2> ~0.6R? , (18) B=087B,, ~25B,,. (20)

1/2 3. y-soft motion
where <r2> is the mean-square radius of the 4

We assume that the nucleus is rigid with respect
to p vibrations and consider only the nuclei with spin
B=0.64mR; . (19) 1 ==0. Their collective motion is determined by the
| equation

nucleus. Then our mass parameter becomes

”wl1 o ,0 1 0 0 ~
_E{Fﬁiﬂ %Jeray (Sln37/ ayj}w(ﬁaﬂ/)JrW(ﬁaJ/)?’(ﬂa?/)—EY’(ﬂ,J’) , (21)

where W(f,y) denotes a potential energy, depending on the deformation parameters S and y.
By making standard substitution

¥(B.y)=pB"Gin3y) " @(B.y), (22)

we remove the first derivatives in Eq. (21):
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wle 1@
28\ 07 B oy

where the effective potential energy has the form
[13]

3w 9w 1
W (B.y)=W(B,y)- 1B 3B Sinz3y-(24)

New wave function @(f,y) satisfies the

boundary conditions

D(f,0)=D(p,7/3)=@(0,7)=0 (25)

and is normalized as

B /3

[ap[drlop.nf=1. (@6

Let the potential energy of the nucleus W(g, y)
have two minima with coordinates ;= £ (0), y =0
and £, = p (n/3), y = n/3, associated with the prolate
and oblate shapes, respectively. At every fixed y the
effective potential W4, y) reaches local minimum
at the point py(y), depending on y. When the
triaxiality parameter y varies from 0 to n/3, the curve
LSo(y) runs along the bottom of the valley connecting
these points. For small # vibrations one can expand
Wei(p, v) in powers of the displacements f - So(y)

W, (B =V () + L )(ﬁ L)) +.r @7)
where
V( ) ef/(ﬁ()(?’) 7)
C(y) = [M] L@
aﬂ /”:ﬂo(}’)

From now on we shall assume that the stiffness
of B vibrations C does not depend on y. It is
interesting to understand when Eq. (23) splits into
two independent equations for £ and y motions.
First, the nucleus should be rigid with respect to S
vibrations, so that its local softness parameter

H() =P By (1) <<1, (29)

where f; /2 implies the squared amplitude of the
ground-state f vibrations with the frequency wg:

h C
Bo=|—: @y == - (30)

Ba)ﬁ B
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J‘P(ﬂ AWy (B.7)P(B.y) = ED(B.y)

(23)

Just condition (29) enables us to replace the
factor 7 at 8> /0y in Eq. (23) by £,°(7) .

Another restriction appears when we introduce
the coordinates

B'=p=B1)s  Sp=B"Py €2))

for description of the f vibrations. Such a procedure
can be formally regarded as the transformation from
the coordinates 5, y to f', and y' =y, under which

the derivatives transform as

o0 0.3 Bpo
op op’ oy oy oy op

In the following we return to designation y
instead of y'.

(32)

Thus, for separation of the collective motions we
should demand also that

% <<1
oy

(33)

When both conditions (29), (33) are satisfied,
Eq. (23) splits into equation for /5 vibrations

e

and another for y motion
oo
{_ 2M(y) o7

where M (y)=BJ; (y) is the effective mass varying

o8 j }l(éﬂ)ZO, (34)

+V(y) - Ey}(ﬂ(y) =0, (3%

along the collective path.
As a consequence, the nuclear wave function
factorizes:

P(B,7)= X, (Sp)P(7) - (36)

Here g, (&5) is an eigenfunction of standard
Hamiltonian for the harmonic oscillator with a
shifted equilibrium position f,(y); ng=0, 1, 2,
indicates the number of fS phonons.
corresponding energy is E =hawy(n, +1/2).

particular, the ground state of such S oscillator is
described by the wave function

The
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I )
wo(.»:w:mexp(—éﬂ/z). (37)

The complete energy of the nucleus will be the
sum E; +E, .

4. WKB approximation

Let the energy E, be lower than the potential
barrier, separating two wellsat =0 and y=7/3

V()

/6 b

Dependence of the symmetric effective potential energy
on the triaxial parameter
(the classical turning points are denoted by a and b).

(see the Figure). The energy E, equals V, in the
classical turning points ¢ and b. In the vicinity of the
first minimum £,,0 the potential energy W(f,y) can
be expanded in the Taylor series W(fy)=
= W(B1,0)+(1/2)W"(8,,0)y°+....  Respectively,  at
y =0 the effective potential energy along the
collective path is represented by

M0’ h?
Vin=—3tr'-

, 38
2 8M,y* (38)

where the mass M;=M(0)=B /7. Similarly, at
y=rl3
M 0)2 2 2
V(7/)=%[7—%j —h—2+AVo,(39)
8M, (7’_7;

where the mass is M,=M(x/3)=Bp, and the
energy shift AV, equals

3R 3K?

Ay =W (B, 7/3)-W(B,0)+————.
0 =W (B, ml3) =W (f,0) M, 4,

(40)

Shrodinger equation (35) with the potential (38)
or (39) and the mass M(y) replaced by M; or M,

44

describes well-known y vibrations of the axially
symmetric prolate or oblate nucleus. The ground
states of these y oscillators are described by the wave
functions [13]

o (E) =2/ 7)) & exp(=£1/2),  (41)

where k£ = 1,2 and the dimensionless coordinates are
determined by

S=7vws.  &=-a/dlyy (@2
with the oscillator lengths
h h
Yoo = |—— Yoo = (43)
Mo, 0,

Here we assumed the frequencies of y vibrations in
both wells be the same.
At ¥ =0 and y =7 /3 the main condition of

the WKB approximation

oA

oy

<<1 (44)

breaks. Here A is the wavelength, related to the
momentum

() =2M()E, -V (7)) (45)

by

Ay) =27/ p(y).

Therefore we ought to use the modified WKB
method, developed in [25] in order to solve quasi-
classically the radial Shrodinger equation of the
hydrogen atom and three-dimensional oscillator.
Then we shall omit the divergent part ~ y* of the
potential (38) and approximate the effective

potential V(y) in the region 0 <y <a by M,w}y*/2.

(46)

An analogous procedure is done for b < y < 7/3,
where we replace the potential V(y) by

AVy+ M0 (y—7/3)* /2.
Since ¢(0) = 0, we choose the wave function at
0 <y <a in the form

o . [17%
¢(y)=—r=sin (— pd7J-
77!

Further we use standard matching procedures and
introduce as usually the action

(47)

lb
A:E£|p|d7. (48)
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Approximating the barrier (a <y < b) by the inverse
parabola

M (7 /6)w: 7Y
V)~ —M(y ——j (49)
2 6
one finds that
4= (50)
ho,
where
W=V(z/6)-E, (51)

represents the height of the barrier.
Under the barrier the wave function has the form

P(y) = ﬁ{COS((A —%j e’ exp [—%HPWJ +
p 7

+%Sin(¢l —%]e'/* exp(%£|p|d7]} , (52

where we employed the designations

/3

1 1
¢1=;£pdy, ¢2=E£pd% (53)
Simple calculation gives
_n(E-4V)

2ho

e

nE
$=""

- 2ha)y H ¢2 (54)

From the boundary condition ¢(z/3) = 0 one has the
following equation

4cot(¢1 —%j cot(¢2 —%j =e".

The wave function in the oblate well takes the form

(55)

¢ . [17%
¢oo=—4Lmn[—,[pdyj, (56)
\/; h /3
where the amplitude
_l sin(g —z/4) e‘Acl. (57)

C, =
> 2cos(¢g, —7/4)

5. Energies and wave functions

Let the barrier have small transparency, i.e.,
exp(-24) << 1. Then the constraint (55) is fulfilled if
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G (E)=(n +3/4)7 (58)
and/or

o (E)=(n,+3/4)7 (59)
where n;=0, 1, 2, .... In the absence of tunneling the

nucleus is located in one of the potential wells, and
the energy levels are determined by exact Bohr-
Sommerfeld equalities (58), (59). Using expressions

(54) for @, one has the energies

e =(2n +3/2)hw,,

€, =4V, +(2n, +3/2)hw, . (60)
These formulas up to the common unessential
constant 7w, /2 correctly reproduce energy levels
the two-dimensional oscillator with the angular
momentum / = 0 and major oscillator quantum
number N =2n + /.

In the case of close-lying levels ¢ ~¢,,
expanding ¢, (E) in E - ¢ and keeping only linear

terms, we transform Eq. (55) to

X —Ax—0* =0, (61)
where the following notations are introduced:
o, _,
x=E-¢, A=¢-¢,, v=—=e". (62)
T

The parameter v determines the tunneling
strength through the barrier. Note that v =2y,

where v, is the tunneling strehgth in the case of the

potential V(x), having two minima and tending to
+00 as x — 0.

From Eq. (61) we get the physical (perturbed)
energies (see also [27, 28]):

E* =%(€1 +€2)i%\/412 +40% .

(63)

As usually, the energy of the ground state 0, is
taken to be zero (£~ =E, =0). Then the energy of

the first excited 0, state equals
E'=E = \/m .
The wave functions of this ground 0" doublet are

P.(N=cre” (E)+ " (&) -

Using Eq. (57), one finds the ratio of their
amplitudes R* =¢, /¢

(64)

(65)
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R - 20 (66) nucleus like an uniformly charged quadrupole drop
* A+ + 407 the EQ transition operator reads [12, 13]
The wave functions ¢,(y) and ¢ (y) are M(E0) = ( B+ 5v5 —=_ B*cos 37J (69)
orthogonal, since R,R =-1. 4n 21 ‘/_

The complete wave functions for the ground 0"

doublet take then the form where Z is the nuclear charge number. For the EO

transition strength between the initial state 0; and
-1/2 .
o, (B)=(1+R) [0 (B.y)+R®(B,y)], final

o, (pr)=(1+8) [0 (1) + ROC(B.7)]. B(E0:0; >0 )=[M (B0 . (70)

(67) one finds the expression

where the prolate-oblate constituents are N N
B(E0;0; >0; )=gB

max

(E0;0; >07), (71

@1((02)) (B,y)= Xo (Szﬂ )¢(()0)(§1(2)) : (68)
where
When ¢, =¢,, the lower level 0] is described by the 4
symmetric superposition of the functions @'”, @{” 9= (1 N Rz)(l N Rz) ’ (72)

and the upper level 0, by the antisymmetric one.
and B_, (F0) stands for the maximal value of

. Electri le transiti - . .
6. Electric monopole transitions B(E0) being achieved in the case of complete

Now we shall consider the electric-monopole mixing of shapes
transitions between the levels 0, and 0. For the |

001232 35 [ 3/ 3 ||
Bmax (EO’O2 _)Ol )_(S”J {ﬂl 132 \/—|:ﬂ1 ﬁz + 2(ﬂ1 +ﬂ2)[Ba) 2 Ba)y J:|} . (73)

B
The factor (72) can be rewritten as | 0.15 Mev<v < 0.18 Mev. Note that Petrovici et al. [5]
predicted for “Kr the weight ¢ = 30 % or 47 %
2 . .
g=4c*(1-c*)= 4(0 /E ) (74) depending on the chosen fitting parameters. At the
03

same time, they predicted B(E0;0, — 0,)=0.03.
Using Eq. (64) we found in addition the difference of
the unperturbed 0 energy levels: 0.35 Mev < |A| <

the ground state 0; . <0.41 Meyv, that is much larger than the estimation
The measured EO transition strength in “Kr  A=-0.071 Mev given in [5].

between the first excited 0, state with the energy
E, =0.509Mev and the ground 0 state lies in the
limits 0.13 < B, (£0;0; >07) < 0.18 [11].
Following [11], we take 1 = 0.4, f, = 0.2, ho,=
=1.689 Mev and hw,~ 1.5 Mev. The mass

parameter B is calculated by means of Eq. (19),
where the radius is determined by familiar
expression

where ¢ = (cz' )2 is the weight of the oblate shape in

Discussion

We derived Egs. (13), (14) for the collective
kinetic energy operator fw,, of the nuclear ellipsoid

of inertia. Apart from the monopole part T ', the

operator YA"CO,, coincides with that, derived by Bohr

and Mottelson [12, 13] for the drop of the

irrotational liquid. However, the mass parameter

(19) appears now to be equal approximately to 2.5
R,=1.34"fm. (75)  Bhyar

For the nuclei with large-amplitude y vibrations

The calculated transition strength coincides with the ~one can not separate the rotation from vibrational

experimental one, if 10%< <15 % and motion. Therefore we limited ourselves by
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consideration of the nuclei with spin /= 0. In general
case the corresponding equation (21) describes
intermixed f and y motions. We have shown that it
reduces to one-dimensional equation for y motion
(35), when the nucleus is rigid with respect to S
vibrations and the curve f(y), drawing the collective
path between prolate and oblate shapes, has small
slope to the y axis.

The Schrodinger equation (35) for y motion is
solved by means of the modified WKB method [25].
There the centrifugal barrier is omitted in the radial
Schrédinger equations for the hydrogen atom and 3-
dimensional oscillator. In analogy we omit the
divergent term of the effective potential energy of
the same origin as the centrifugal barrier.

The derived equation (61) for the physical
energies has the same form as in the case of one-
dimensional symmetric potential V(x), which has
two minima and grows monotonically as x — o
[27, 28]. But now the y tunneling strength doubles,
that has simple quasi-classical explanation. If at the
initial moment ¢ = 0 the particle is located in one of
the potential wells of V(x), then at # > 0 there arise
periodic transitions (Rabi oscillations) from one well
to another with the Rabi frequency
0Q,=v,/h=(hw,/2r)e" (see, e.g., the discussion
[30] of the molecule NH;). Here the factor e*
denotes the transmission probability through half a
barrier from the turning point x = a to the frontier
between the well x = (@ + b)/2 (the transmission
probability through the whole barrier equals e™, if
24 >> 1 [25 - 27]). The second frequency factor
w,/2m represents the knocking rate, which

indicates how many times per second a classical

particle knocks the barrier at the turning point x = q,
which lies on one side of the potential well.

On the other hand, the y motion is restricted
within the limits from 0 to 7/3. At y =0 there are

transverse y vibrations of the prolate nuclear shape
in the plane x', y' perpendicular to the symmetry axis
z'. These vibrations can be described as the radial
motion of the particle inside the two-dimensional
parabolic potential in analogy to the deformation
vibrations of the CO, molecule [31]. Such classical
particle, swinging in the well, reaches the turning
points on both sides of the well (the radial
coordinate y = a) two times during the period of
vibrations. Then the knocking rate doubles
(compared to that for vibrations in the one-
dimensional potential V(x)), i.e., taking the value
o,/m. The same situation exists at y ~ /3. Hence,

in the case of the large-amplitude y motion the
tunneling strength v =2v, (here we put @, =®, ).

Using experimental data of Korten [11], we came
to the conclusion that the unperturbed vibrational
levels in two potential wells of "Kr are not
degenerate, and mixing of the oblate and prolate
shapes of this nucleus, although significant, are not
complete, as it was assumed previously in [11]. The
derived Egs. (71) - (73) completely reproduce
experimental values of EQ transition strengths. Note
that the S and y vibrations give few percent
corrections to Bn.x(E0) (for rigid nucleus with

@y, —> 0 the maximal EO transition strength

equals 0.37). So the enhancement of these transitions
observed in [11] is caused by the prolate-oblate
mixing.
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TYHEJIOBAHHSA B3/IOBK OCI y MI’K BUTSATHYTOIO TA CIUNIIOCHYTOIO ®OPMAMUA
0. 5. I3106ank, B. B. YTI00K

BukopucroByroun kxoopamHaté 3ikeHzapara - J[3to0mmka - @iminoBa, MH OTpHUMaid DPIBHSIHHSA, [0 BH3HAYAE
o0epTaHHS MOHOIOJIBHO-KBAAPYIIOIBHIX KOJIMBAHb €IICoifa iHepHii siipa. 3a BHHATKOM MOHOIIOJIBHO! YaCTHHH, BOHO
30iraeTscs 3 piBHAHHAIM bopa - MoTTenscoHa. Ane Haml MacOBHH MapaMeTp BHSBISAETHCA Yy 2,5 pasu OUIbIINi, HiX
ripoJUHaMIYHUN MacoBHH mapamerp. PIBHSHHS pO3B’s3y€ThCsl KBA3IKIIACHYHO JUIS SIAEP 13 HKOPCTKHUM 3, ajie M’sIKHM 7,
MOBEPXHEBI €Heprii sIKMX MaroTh JBa MiHIMyMH, LIO BiJIIOBIAIOTh BUTSATHYTIH Ta CIUTIOCHYTIH (opmam snupa Ta
3B’s13aHi 3 KOJIEKTHBHOIO JIOPIKKOIO B3JIOBXK OCi Y. [HTEHCHUBHICTH Y-TyHEJIOBAHHSI BUSBILSIETHCS y JBa pa3u OUIBILIOO,
HDK 3BMYaiiHa I OJHOBHUMIPHOTO NOTEHIaly, SKWI Ma€ BUTATHYTHH Ta CIUIIOCHYTHH MIHIMyMH, BiIOKpeMIIEHi
6ap’epom. PaspaxoBano intencuBHicTh E0Q mnepexomiB ocHoBHoro 0° ay6iera. PesynbTaTd MOromkyroThes 3
€KCIIEPEMEHTOM IS "Kr.

TYHHEJMPOBAHHME BJIOJIb OCHU y MEX/Y BBITSIHYTOM U CILIIOCHYTOM ®OPMAMU
A. 5. I3106auk, B. B. YTI0%K

Hcnonb3ys koopauHaTel 3ukeHapara - J[3ro0muka - OUIKINOBa, Mbl HONYYHIH YpaBHEHHE, KOTOPOE OMpPEICIsicT
BpallleHNe MOHOIIOJIbHO-KBaIPYIIOJIBHBIX KOJIEOaHWH »IUIMIICOMIa MHEPUUH siapa. 3a HMCKIIOYEHHEM MOHOMNOJIBHON
4acTH, OHO COBHAJAET ¢ ypaBHEHHeM bopa - Motrrenscona. OHako Hall MaccOBBIN MapaMeTp ModydaeTcs B 2,5 pasa
Oosplle, YeM THAPOAMHAMUYECKMH MACCOBBIH Iapamerp. YpaBHEHHME pelaeTcsi KBa3WKIACCHYECKH UL SiAep C
JKECTKHUM [3, HO MSTKHM ), YbH TIOBEPXHOCTHBIC YHEPTUH UMEIOT BBITSHYTBHIH U CIDTIOCHYTHI MUHHUMYMBI, CBS3aHHBIE C
KOJJICKTHBHOM JOPOKKOH BIOJh y OCH. VIHTEHCHBHOCTH )-TyHHEIHPOBAaHUS MOJYy4YaeTcs B NIBa pa3a OOJbIIe, YeM
oOBbIYHAsT IUTI OJHOMEPHOTO IOTEHIHANa, MMEIOMIEro Ba MHHHMYyMa, pa3lelieHble OaphepoM. PaccumTaHBl CHITBI
nepexonoB E0 ocroBroro 0 sy6iera. PesybTaThl COrIacyioTesi ¢ SKCIepeMenToM urs | Kr.
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