![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
0+ states and collective bands in deformed actinide nuclei
A. I. Levon1, G. Graw2, S. Christen3, Y. Eisermann2, C. Günther4, R. Hertenberger2, J. Jolie3, O. Möller3, P. Thirolf2, D. Tonev3, H.-F. Wirth2, N. V. Zamfir5
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Section Physik, Ludwig-Maximilians-Universität München, Garching, Germany
3Institut für Kernphysik, Universität zu Köln, Köln, Germany
4Helmholtz-Institut für Strahlen- and Kernphysik, Universität Bonn, Bonn, Germany
5Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut, USA
Abstract: By means of the (p, t) reaction we studied the excitation spectra of 0+ states in the deformed nuclei 228Th, 230Th, and 232U, using the Q3D magnetic spectrograph facility at the Munich tandem accelerator. At small reaction angles the 0+ transfer angular distributions have steeply rising cross sections which allow identifying these states in otherwise very complicated and dense spectra. For each of these nuclei we resolve typically about ten excited states with safe 0+ assignments. The studied excitation energies range up to 2.5, 2.7, and 2.3 MeV, respectively. The results are compared with IBA calculations in the spdf-boson space. This highly schematic collective model description, including octupole collectivity, but neglecting other relevant degrees of freedom, gives numbers of excited 0+ states in these actinide nuclei that are rather close to the observed ones. Sequences of states are selected which can be treated as rotational bands. Inertial parameters are obtained at fitting energies of these bands and they are discussed in connection with the IBM calculations.
References:1. Julin R., Kantele J., Kumpulainen J. et al. Phys. Rev. C 36 (1987) 1129. https://doi.org/10.1103/PhysRevC.36.1129
2. Yeh M., Garrett P. E., McGrath C. A. et al. Phys. Rev. Lett. 76 (1996) 1208. https://doi.org/10.1103/PhysRevLett.76.1208
3. Yates S. W., Yeh M., Kadi M. et al. J. Phys. G 25 (1999) 691. https://doi.org/10.1088/0954-3899/25/4/021
4. Valnion B. D., Ponomarev V. Yu., Eisermann Y. et al. Phys. Rev. C 63 (2001) 024318. https://doi.org/10.1103/PhysRevC.63.024318
5. Fayans S. A., Platonov A. P., Graw G., Hofer D. Nucl. Phys. A 577 (1994) 557. https://doi.org/10.1016/0375-9474(94)90933-4
6. Hertenberger R., Eckle G., Eckle F. J. et al. Nucl. Phys. A 574 (1994) 414. https://doi.org/10.1016/0375-9474(94)90238-0
7. Ponomarev V. Yu., Pignanelli M., Blasi N. et al. Nucl. Phys. A 601 (1996) 1. https://doi.org/10.1016/0375-9474(95)00504-8
8. Oros A. M., Von Brentano P., Jolos R. V. et al. Nucl. Phys. A 613 (1997) 209. https://doi.org/10.1016/S0375-9474(96)00437-X
9. Cata-Danil Gh., Bucurescu D., Trache L. et al. Phys. Rev. C 54 (1996) 2059. https://doi.org/10.1103/PhysRevC.54.2059
10. Jaskola M., Guazzoni P., Zetta L. et al. Acta Phys. Pol. B 33 (2002) 363.
11. Levon A. I., De Boer J., Graw G. et al. Nucl. Phys. A 576 (1994) 267. https://doi.org/10.1016/0375-9474(94)90260-7
12. Maher J. V., Erskine J. R., Friedman A. M. et al. Phys. Rev. C 5 (1972) 051305.
13. Ackermann B., Baltzer H., Freitag K. et al. Z. Phys. A 350 (1994) 13. https://doi.org/10.1007/BF01285047
14. Baltzer H., Freitag K., Günther C. et al. Z. Phys. A 352 (1995) 47. https://doi.org/10.1007/BF01292760
15. Baltzer H., De Boer J., Gollwitzer A. et al. Z. Phys. A 356 (1996) 13. https://doi.org/10.1007/s002180050142
16. Weber T., De Boer J., Freitag K. et al. Z.Phys. A 358 (1997) 281. https://doi.org/10.1007/s002180050330
17. Soloviev V. G. Z. Phys. A 334 (1989) 143. https://doi.org/10.1007/BF01294215
18. Shirikova N. Yu. Private communication.
19. Soloviev V. G., Sushkov A. V., Shirikova N. Yu. Nucl. Phys. A 568 (1994) 244; https://doi.org/10.1016/0375-9474(94)90200-3
Phys. Part. Nucl. 27 (1996) 667; https://doi.org/10.1016/1359-835X(96)88525-3
Prog. Part. Nucl. Phys. 38 (1997) 53.
20. Weber T., De Boer J., Freitag K. et al. Eur. Phys. J. A 3 (1998) 25. https://doi.org/10.1007/s100500050146
21. Otsuka T., Sugita M. J. Phys. Soc. J. 58 (1989) 1207. https://doi.org/10.1143/JPSJ.58.1207
22. Lesher S. R., Aprahamian A., Trache L. et al. Phys. Rev. C 66 (2002) 051305(R). https://doi.org/10.1103/PhysRevC.66.051305
23. A. I. Levon et al. To be published.
24. Zamfir N. V., Zhang J. -Y., Casten R. F. Phys. Rev. C 66 (2002) 057303. https://doi.org/10.1103/PhysRevC.66.057303
25. Artna-Cohen A. Nucl. Data Sheets 80 (1997) 723. https://doi.org/10.1006/ndsh.1997.0007
26. Akovali Y. A. Nucl. Data Sheets 69 (1993) 155. https://doi.org/10.1006/ndsh.1993.1026
27. Schmorak M. R. Nucl. Data Sheets 63 (1991) 139. https://doi.org/10.1016/S0090-3752(05)80003-1
28. Amzal N., Cocks J. F. C., Butler P. A. et al. J. Phys. G 25 (1999) 831. https://doi.org/10.1088/0954-3899/25/4/048
29. Cocks J. F. C., Hawcroft D., Amzal N. et al. Nucl. Phys. A 645 (1999) 61. https://doi.org/10.1016/S0375-9474(98)00586-7
30. Butler P. A., Nazarewicz W. Rev. Mod. Phys. 68 (1996) 349. https://doi.org/10.1103/RevModPhys.68.349
31. Raduta A. A., Lo Iudice N., Ursu I. I. Nucl. Phys. A 608 (1996) 11; https://doi.org/10.1016/0375-9474(96)00264-3
Nuovo Cim. A 109 (1996) 1669. https://doi.org/10.1007/BF02773548
32. Jolos R. V., Palchikov Yu. V. Yad. Fiz. 60 (1997) 1202;
Phys. Atomic Nuclei 60 (1997) 1077.
33. Minkov N., Drenska S. B., Raychev P. P. et al. Phys. Rev. C 61 (2000) 064301. https://doi.org/10.1103/PhysRevC.61.064301
34. Safarov A. R., Safarov R. Kh., Sitdikov A. S. Yad. Fiz. 64 (2001) 1496;
Phys. Atomic Nuclei 64 (2001) 1419. https://doi.org/10.1134/1.1398934
35. Tsvetkov A., Kvasil J., Nazmitdinov R. G. J. Phys. G 28 (2002) 2187. https://doi.org/10.1088/0954-3899/28/8/305
36. Raduta A. A., Ionescu D. Phys. Rev. C 67 (2003) 044312. https://doi.org/10.1103/PhysRevC.67.044312
37. Wu C. Y., Cline D. Phys. Rev. C 54 (1996) 2356. https://doi.org/10.1103/PhysRevC.54.2356
38. Meyer U., Raduta A. A., Faessler A. Nucl. Phys. A 641 (1998) 321. https://doi.org/10.1016/S0375-9474(98)00474-6
39. Cottle P. D., Zamfir N. V. Phys. Rev. C 54 (1996) 176. https://doi.org/10.1103/PhysRevC.54.176
40. Cottle P. D., Zamfir N. V. Phys. Rev. C 58 (1998) 1500. https://doi.org/10.1103/PhysRevC.58.1500
41. Minkov N., Drenska S. B., Raychev P. P. et al. Phys. Rev. C 60 (1999) 034305. https://doi.org/10.1103/PhysRevC.60.034305
42. Diallo A. F., Barrett B. R., Navratil P., Gorrichategui C. Ann. Phys. 279 (2000) 81. https://doi.org/10.1006/aphy.1999.5976
43. Zamfir N. V., Kusnezov D. Phys. Rev. C 63 (2001) 054306; https://doi.org/10.1103/PhysRevC.63.054306
Phys. Rev. C 67 (2003) 014305. https://doi.org/10.1103/PhysRevC.67.014305
44. Li S. C., Kuyucak S. Nucl.Phys. A 604 (1996) 305. https://doi.org/10.1016/0375-9474(96)00170-4
45. Löffler M., Scheerer H. J., Vonach H. Nucl. Instum. Methods 111 (1973) 1. https://doi.org/10.1016/0029-554X(73)90090-6
46. Zanotti E., Bisenberger M., Hertenberger R. et al. Nucl. Instrum. Methods A 310 (1991) 706. https://doi.org/10.1016/0168-9002(91)91123-D
47. Wirth H. -F., Angerer H., Von Egidy T. et. al. Annual Report (Be-schleunigerlaboratorium München, 2001) p. 71.
48. Wirth H. -F. Ph. D. Thesis (Techn. Univ. München, 2001). http://tumb1.biblio.tu-muenchen.de/publ/diss/ph/2001/wirth.html
49. Ardisson G., Hussonnois M., LeDu J. F. et al. Phys. Rev. C 49 (1994) 2963. https://doi.org/10.1103/PhysRevC.49.2963
50. Kunz P. D. Computer code CHUCK3 (University of Colorado) unpublished.
51. Perey C. M., Perey F. G. At. Data Nucl. Data Tables 17 (1976) 1. https://doi.org/10.1016/0092-640X(76)90007-3
52. Iudice N. Lo, Sushkov A. V., Shirikova N. Yu. Phys. Rev. C 72 (2005) 034303. https://doi.org/10.1103/PhysRevC.72.034303