Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2007, volume 8, issue 4, pages 27-39.
Section: Nuclear Physics.
Received: 23.06.2006; Published online: 30.12.2007.
PDF Full text (en)
https://doi.org/10.15407/jnpae2007.04.027

0+ states and collective bands in deformed actinide nuclei

A. I. Levon1, G. Graw2, S. Christen3, Y. Eisermann2, C. Günther4, R. Hertenberger2, J. Jolie3, O. Möller3, P. Thirolf2, D. Tonev3, H.-F. Wirth2, N. V. Zamfir5

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Section Physik, Ludwig-Maximilians-Universität München, Garching, Germany
3Institut für Kernphysik, Universität zu Köln, Köln, Germany
4Helmholtz-Institut für Strahlen- and Kernphysik, Universität Bonn, Bonn, Germany
5Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut, USA

Abstract: By means of the (p, t) reaction we studied the excitation spectra of 0+ states in the deformed nuclei 228Th, 230Th, and 232U, using the Q3D magnetic spectrograph facility at the Munich tandem accelerator. At small reaction angles the 0+ transfer angular distributions have steeply rising cross sections which allow identifying these states in otherwise very complicated and dense spectra. For each of these nuclei we resolve typically about ten excited states with safe 0+ assignments. The studied excitation energies range up to 2.5, 2.7, and 2.3 MeV, respectively. The results are compared with IBA calculations in the spdf-boson space. This highly schematic collective model description, including octupole collectivity, but neglecting other relevant degrees of freedom, gives numbers of excited 0+ states in these actinide nuclei that are rather close to the observed ones. Sequences of states are selected which can be treated as rotational bands. Inertial parameters are obtained at fitting energies of these bands and they are discussed in connection with the IBM calculations.

References:

1. Julin R., Kantele J., Kumpulainen J. et al. Phys. Rev. C 36 (1987) 1129. https://doi.org/10.1103/PhysRevC.36.1129

2. Yeh M., Garrett P. E., McGrath C. A. et al. Phys. Rev. Lett. 76 (1996) 1208. https://doi.org/10.1103/PhysRevLett.76.1208

3. Yates S. W., Yeh M., Kadi M. et al. J. Phys. G 25 (1999) 691. https://doi.org/10.1088/0954-3899/25/4/021

4. Valnion B. D., Ponomarev V. Yu., Eisermann Y. et al. Phys. Rev. C 63 (2001) 024318. https://doi.org/10.1103/PhysRevC.63.024318

5. Fayans S. A., Platonov A. P., Graw G., Hofer D. Nucl. Phys. A 577 (1994) 557. https://doi.org/10.1016/0375-9474(94)90933-4

6. Hertenberger R., Eckle G., Eckle F. J. et al. Nucl. Phys. A 574 (1994) 414. https://doi.org/10.1016/0375-9474(94)90238-0

7. Ponomarev V. Yu., Pignanelli M., Blasi N. et al. Nucl. Phys. A 601 (1996) 1. https://doi.org/10.1016/0375-9474(95)00504-8

8. Oros A. M., Von Brentano P., Jolos R. V. et al. Nucl. Phys. A 613 (1997) 209. https://doi.org/10.1016/S0375-9474(96)00437-X

9. Cata-Danil Gh., Bucurescu D., Trache L. et al. Phys. Rev. C 54 (1996) 2059. https://doi.org/10.1103/PhysRevC.54.2059

10. Jaskola M., Guazzoni P., Zetta L. et al. Acta Phys. Pol. B 33 (2002) 363.

11. Levon A. I., De Boer J., Graw G. et al. Nucl. Phys. A 576 (1994) 267. https://doi.org/10.1016/0375-9474(94)90260-7

12. Maher J. V., Erskine J. R., Friedman A. M. et al. Phys. Rev. C 5 (1972) 051305.

13. Ackermann B., Baltzer H., Freitag K. et al. Z. Phys. A 350 (1994) 13. https://doi.org/10.1007/BF01285047

14. Baltzer H., Freitag K., Günther C. et al. Z. Phys. A 352 (1995) 47. https://doi.org/10.1007/BF01292760

15. Baltzer H., De Boer J., Gollwitzer A. et al. Z. Phys. A 356 (1996) 13. https://doi.org/10.1007/s002180050142

16. Weber T., De Boer J., Freitag K. et al. Z.Phys. A 358 (1997) 281. https://doi.org/10.1007/s002180050330

17. Soloviev V. G. Z. Phys. A 334 (1989) 143. https://doi.org/10.1007/BF01294215

18. Shirikova N. Yu. Private communication.

19. Soloviev V. G., Sushkov A. V., Shirikova N. Yu. Nucl. Phys. A 568 (1994) 244; https://doi.org/10.1016/0375-9474(94)90200-3

Phys. Part. Nucl. 27 (1996) 667; https://doi.org/10.1016/1359-835X(96)88525-3

Prog. Part. Nucl. Phys. 38 (1997) 53.

20. Weber T., De Boer J., Freitag K. et al. Eur. Phys. J. A 3 (1998) 25. https://doi.org/10.1007/s100500050146

21. Otsuka T., Sugita M. J. Phys. Soc. J. 58 (1989) 1207. https://doi.org/10.1143/JPSJ.58.1207

22. Lesher S. R., Aprahamian A., Trache L. et al. Phys. Rev. C 66 (2002) 051305(R). https://doi.org/10.1103/PhysRevC.66.051305

23. A. I. Levon et al. To be published.

24. Zamfir N. V., Zhang J. -Y., Casten R. F. Phys. Rev. C 66 (2002) 057303. https://doi.org/10.1103/PhysRevC.66.057303

25. Artna-Cohen A. Nucl. Data Sheets 80 (1997) 723. https://doi.org/10.1006/ndsh.1997.0007

26. Akovali Y. A. Nucl. Data Sheets 69 (1993) 155. https://doi.org/10.1006/ndsh.1993.1026

27. Schmorak M. R. Nucl. Data Sheets 63 (1991) 139. https://doi.org/10.1016/S0090-3752(05)80003-1

28. Amzal N., Cocks J. F. C., Butler P. A. et al. J. Phys. G 25 (1999) 831. https://doi.org/10.1088/0954-3899/25/4/048

29. Cocks J. F. C., Hawcroft D., Amzal N. et al. Nucl. Phys. A 645 (1999) 61. https://doi.org/10.1016/S0375-9474(98)00586-7

30. Butler P. A., Nazarewicz W. Rev. Mod. Phys. 68 (1996) 349. https://doi.org/10.1103/RevModPhys.68.349

31. Raduta A. A., Lo Iudice N., Ursu I. I. Nucl. Phys. A 608 (1996) 11; https://doi.org/10.1016/0375-9474(96)00264-3

Nuovo Cim. A 109 (1996) 1669. https://doi.org/10.1007/BF02773548

32. Jolos R. V., Palchikov Yu. V. Yad. Fiz. 60 (1997) 1202;

Phys. Atomic Nuclei 60 (1997) 1077.

33. Minkov N., Drenska S. B., Raychev P. P. et al. Phys. Rev. C 61 (2000) 064301. https://doi.org/10.1103/PhysRevC.61.064301

34. Safarov A. R., Safarov R. Kh., Sitdikov A. S. Yad. Fiz. 64 (2001) 1496;

Phys. Atomic Nuclei 64 (2001) 1419. https://doi.org/10.1134/1.1398934

35. Tsvetkov A., Kvasil J., Nazmitdinov R. G. J. Phys. G 28 (2002) 2187. https://doi.org/10.1088/0954-3899/28/8/305

36. Raduta A. A., Ionescu D. Phys. Rev. C 67 (2003) 044312. https://doi.org/10.1103/PhysRevC.67.044312

37. Wu C. Y., Cline D. Phys. Rev. C 54 (1996) 2356. https://doi.org/10.1103/PhysRevC.54.2356

38. Meyer U., Raduta A. A., Faessler A. Nucl. Phys. A 641 (1998) 321. https://doi.org/10.1016/S0375-9474(98)00474-6

39. Cottle P. D., Zamfir N. V. Phys. Rev. C 54 (1996) 176. https://doi.org/10.1103/PhysRevC.54.176

40. Cottle P. D., Zamfir N. V. Phys. Rev. C 58 (1998) 1500. https://doi.org/10.1103/PhysRevC.58.1500

41. Minkov N., Drenska S. B., Raychev P. P. et al. Phys. Rev. C 60 (1999) 034305. https://doi.org/10.1103/PhysRevC.60.034305

42. Diallo A. F., Barrett B. R., Navratil P., Gorrichategui C. Ann. Phys. 279 (2000) 81. https://doi.org/10.1006/aphy.1999.5976

43. Zamfir N. V., Kusnezov D. Phys. Rev. C 63 (2001) 054306; https://doi.org/10.1103/PhysRevC.63.054306

Phys. Rev. C 67 (2003) 014305. https://doi.org/10.1103/PhysRevC.67.014305

44. Li S. C., Kuyucak S. Nucl.Phys. A 604 (1996) 305. https://doi.org/10.1016/0375-9474(96)00170-4

45. Löffler M., Scheerer H. J., Vonach H. Nucl. Instum. Methods 111 (1973) 1. https://doi.org/10.1016/0029-554X(73)90090-6

46. Zanotti E., Bisenberger M., Hertenberger R. et al. Nucl. Instrum. Methods A 310 (1991) 706. https://doi.org/10.1016/0168-9002(91)91123-D

47. Wirth H. -F., Angerer H., Von Egidy T. et. al. Annual Report (Be-schleunigerlaboratorium München, 2001) p. 71.

48. Wirth H. -F. Ph. D. Thesis (Techn. Univ. München, 2001). http://tumb1.biblio.tu-muenchen.de/publ/diss/ph/2001/wirth.html

49. Ardisson G., Hussonnois M., LeDu J. F. et al. Phys. Rev. C 49 (1994) 2963. https://doi.org/10.1103/PhysRevC.49.2963

50. Kunz P. D. Computer code CHUCK3 (University of Colorado) unpublished.

51. Perey C. M., Perey F. G. At. Data Nucl. Data Tables 17 (1976) 1. https://doi.org/10.1016/0092-640X(76)90007-3

52. Iudice N. Lo, Sushkov A. V., Shirikova N. Yu. Phys. Rev. C 72 (2005) 034303. https://doi.org/10.1103/PhysRevC.72.034303