![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
The transport coefficients for slow collective motion
F. A. Ivanyuk1
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: We study the collective motion of iso-scalar type at finite excitations and concentrate on slow motion, due to the presence of a strong friction force. In the present talk the extension of approach to the case of low excitation energies, where shell effects and pairing correlation are important, is reviewed. The case of rotating nuclei is also included. As an application of the theory, the numerical results are presented for the transport coefficients for few composite systems formed in the so called warm fusion reactions used for the synthesis of the super heavy systems.
References:1. Pomorski K., Bartel J., Richert J., Dietrich K. Evaporation of light particles from a hot, deformed and rotating nuclei. Nucl. Phys. A 605 (1999) 87. https://doi.org/10.1016/0375-9474(96)00180-7
2. Fröbrich P., Gontchar I. A. Langevin description of fusion, deep-inelastic collisions and heavy-ion-induced fission. Phys. Rep. 292 (1998) 131. https://doi.org/10.1016/S0370-1573(97)00042-2
3. Abe Y., Ayik S., Reinhard P. G., Suraud E. On Stochastic Approach of Nuclear Dynamics. Phys. Rep. 275 (1996) 49. https://doi.org/10.1016/0370-1573(96)00003-8
4. Strutinsky V. M. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95 (1967) 420. https://doi.org/10.1016/0375-9474(67)90510-6
5. Strutinsky V. M. "Shells" in deformed nuclei. Nucl. Phys. A 122 (1968) 1. https://doi.org/10.1016/0375-9474(68)90699-4
6. Brack M., Damgaard J., Jensen A. S. et al. Funny Hills: The Shell-Correction Approach to Nuclear Shell Effects and Its Applications to the Fission Process. Rev. Mod. Phys. 44 (1972) 320. https://doi.org/10.1103/RevModPhys.44.320
7. Blocki J., Boneh Y., Nix J. R. et al. One-Body Dissipation and the Supper-Viscosity of Nuclei. Ann. Phys. 113 (1978) 330. https://doi.org/10.1016/0003-4916(78)90208-7
8. Davies K. T. R., Sierk A. J., Nix J. R. Effect of viscosity on the dynamics of fission. Phys. Rev. C 13 (1976) 2385. https://doi.org/10.1103/PhysRevC.13.2385
9. Hofman D. J., Back B. B., Diószegi I. et al. Viscosity of saddle-to-scission motion in hot 240Cf from giant dipole resonance gamma-yield. Phys. Rev. Lett. 72 (1994) 470. https://doi.org/10.1103/PhysRevLett.72.470
10. Hofmann H. A quantal transport theory for nuclear collective motion: The merits of a locally harmonic approximation. Phys. Rep. 284 (1997) 137. https://doi.org/10.1016/S0370-1573(97)00006-9
11. Ivanyuk F. A., Hofmann H. Pairing and shell effects in the transport coefficients of collective motion. Nucl. Phys. A 657 (1999) 19. https://doi.org/10.1016/S0375-9474(99)00324-3
12. Pashkevich V. V. On the asymmetric deformation of fissioning nuclei. Nucl. Phys. A 169 (1971) 275. https://doi.org/10.1016/0375-9474(71)90884-0
13. Hofman D. J., Back B. B., Paul P. Rapid increase in prescission giant-dipole-resonance γ-ray emission with bombarding energy. Phys. Rev. C 51 (1995) 2597. https://doi.org/10.1103/PhysRevC.51.2597
14. Hilscher D., Gontchar I. A., Rossner H. Fission Dynamics of Hot Nuclei and Nuclear Dissipation. Physics of Atomic Nuclei 57 (1994) 1187.
15. Ivanyuk F. A. The shell effects in the collective transport coefficients. Proc. of Int. Conf. on Nucl. Phys. "Nuclear shells - 50 years" (Singapore: World Scientific, 2000) p. 456.
16. Kosenko G. I., Ivanyuk F. A., Pashkevich V. V. The Multi-dimensional Langevin Approach to the Description of Fusion-fission Reactions. Journal of Nuclear and Radiochemical Science 1 (2002) 71. https://doi.org/10.14494/jnrs2000.3.71
17. Hofmann H., Ivanyuk F. A., Rummel C., Yamaji S. Nuclear fission: The "onset of dissipation" from a microscopic point of view. Phys. Rev. C 64 (2001) 054316. https://doi.org/10.1103/PhysRevC.64.054316
18. Rummel C., Hofmann H. Influence of microscopic transport coefficients on the formation probabilities for super-heavy elements. Nucl. Phys. A 727 (2003) 24. https://doi.org/10.1016/j.nuclphysa.2003.07.013
19. Ivanyuk F. A., Yamaji S. The effect of nuclear rotation on the collective transport coefficients. Nucl. Phys. A 694 (2001) 295. https://doi.org/10.1016/S0375-9474(01)00990-3
20. Aritomo Y., Wada T., Ohta M., Abe Y. Phys. Rev. C 59 (1999) 796. https://doi.org/10.1103/PhysRevC.59.796
21. Pashkevich V. V., Frauendorf S. On oblate-prolate transition in the ground state rotational band of light mercury isotopes. Phys. Lett. B 55 (1975) 365. https://doi.org/10.1016/0370-2693(75)90360-3
22. Neergaard K., Pashkevich V. V., Frauendorf S. Nucl. Phys. A 262 (1976) 61. https://doi.org/10.1016/0375-9474(76)90440-1