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THE TRANSPORT COEFFICIENTS FOR SLOW COLLECTIVE MOTION
F. A. Ivanyuk

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

We study the collective motion of iso-scalar type at finite excitations and concentrate on slow motion, due to the
presence of a strong friction force. In the present talk the extension of approach to the case of low excitation energies,
where shell effects and pairing correlation are important, is reviewed. The case of rotating nuclei is also included. As an
application of the theory, the numerical results are presented for the transport coefficients for few composite systems
formed in the so called warm fusion reactions used for the synthesis of the super heavy systems.

1. Introduction

The synthesis of the super heavy elements is one
of the most challenge problems of nuclear physics.
Intensive experiments in this direction are carried
out at GSI, Darmstadt, JINR, Dubna and RIKEN,
Tokyo. The theoretical description of fusion-fission
reaction is often based on the Langevin equation [1 -
3] for the collective variables Q, which

parameterize the shape of the composite system,
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where R (t) is the random force obeying conditions

<R,(1)>=0, <R (MR, (t)>=25(t-1)

and
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P

To solve the Langevin equation (1) for Q# 1)

one would need first of all its coefficients - the
potential energy V(Q,), friction y, - and mass

M, -tensors.

The potential energy is commonly calculated
within the microscopic-macroscopic shell correction
method [4 - 6], which describes the collective energy
in the quasi-static picture rather accurately. The
tensors of friction y,, and mass M are usually

computed within the macroscopic approaches (the
wall and window formula for friction [7] and the
Werner - Wheeler (WW) method for the inertia [8]).
These methods provide rather simple expressions for
the collective friction and mass coefficients.
However the deformation and temperature
dependence of macroscopic transport coefficients
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7., and M is not very reliable, at least at small

excitation energies. For example, the observed in [9]
increase of the damping parameter 7 =y%2\M |C|
with the excitation energy is impossible to explain
neither with the wall formula value »**" for friction

(where the friction parameter practically does not
depend on the temperature T or excitation energy)
nor within the hydrodynamic model (friction
parameter decreases as 1/T?). Also the shell and
pairing effects, which are very important at low
excitation energies, are completely ignored in
macroscopic models. Thus the necessity of having a
microscopic theory for the collective transport
coefficients becomes quite evident.

2. Linear response theory
for the collective motion

It is supposed [10] that the nuclear many-body
Hamiltonian can be approximated by

H(Xi: pi: Qﬂ): Hmf(xia pia Qlu)+v(r§s)(xi5 pi)ﬂ (3)

where the mean field Hamiltonian H, depends
explicitly on one or few collective variables Q,
which specify the shape of nuclear surface and the
residual two-body interaction V(2 is assumed to be
independent of the collective coordinates Q, . As the

consequence the generators for the collective

motion, namely,

OH(x. p..Q,))|
aQ,

_ aH mf(Xi7 pi= Qg)|
= aQﬂ

F= 4)

Q.=Q,

Q.=Q;

are the one-body operators, what allows applying the
independent particle model. It is shown in [10] that
the slow collective motion can be described locally
in terms of so-called collective response function
Yoo (1) whose Fourier transform has the form

Zot(@) = k(& + y(0)) y(). (5)
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In (5) the y(w) is the Fourier transform of the
causal response function

£, (t-9) = 0-5)- 1 (p, @ DIFLD. L)) ©)

Here FL(t) is the interaction representation of
operator (4) and p the thermal
P (Q,, T)cexp(-H(Q,)/T).  The

inverse of coupling tensor «,, in (5) is defined by

represents

equilibrium

the quasi-static properties of the system,
K,uv = _Z,uv (O) - Cyv (0)5 (7)

where y,,(0) is the static response and C, (0) is
the stiffness of quasi-static
C,0)= 82F/6QH8QV .

It turns out that the transport coefficients for the
average collective motion can be expressed in terms
of y.u(®). As shown in [I11] one has to

free  energy,

approximate the quantity &« ;(co“_l(a))l( by the

second order polynomial in frequency
(K (@)K),, = -M, o' -iy,0+C,. (8)

Evidently, the coefficients M, , y,, and C

stand for the elements of the tensors for the mass,
friction and stiffness. For slow collective motion the
transport coefficients can be deduced by expanding
the left hand part of (8) around @w=0. In this way
one gets

}/ ~ | a(K./Ycoll 71((())K)|

p =xy " (0)7(0)x "'(0)x,
(0]

=0

P (K g (@)
200*

M =~

=0

=& " (0)[M(0)+7(0) x "(0)7(0)]x "'(O)x.  (9)

The friction y(0) and mass M (0) tensors are
expressed in terms of first and second derivatives of
the intrinsic response function y,, (@) at @ =0,

10°%,,(®)
M (0) = — L
yv( ) 2 66{)2

=0 w=0

(@)

ow .(10)

7w (0)=

For obvious reasons, expressions
referred to as the "zero frequency limit".
An example of numerical results for the ratio of
the friction coefficient to the mass parameter is

(10) are
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shown in Fig. 1. These results were obtained with
the deformed Woods-Saxon shell model potential.
The shape of nuclear surface was parameterized in
terms of Cassini ovaloids [12]. As the compound
nucleus the system **Pb+'° O =** Th was chosen
here for which the rapid increase of dissipation with
the excitation energy was found [13].

12

=

X

>

2

=

<

>~

R4 2/2 Ro

Fig. 1. The reduced friction coefficient M as function
of deformation and temperature T =(1-5)MeV

(indicated in the Figure). The curve with dots marks
wall
e /M irr

It is seen from Fig. 1 that M

constant over the whole deformation region, for all
computations but T =1MeV, a case for which the

is essentially

fluctuations are seen. However, there is a marked
dependence on excitation: M increases strongly

with T . This is in clear distinction to the result one
gets from applying the wall formula y,,, for friction

and that of irrotational flow M, for the inertia.
Note also that the numerical values of M are in

agreement with those deduced from the analysis of
experimental data [14].

3. The effect of pairing

The pair correlations are vital for understanding
of many elementary features of nuclear physics at
small thermal excitations. It is of great interest to
account for pair correlations also in the description
of typical transport problems of dissipative systems.
On general grounds one could expect that pairing
will greatly diminish nuclear dissipation.

To account for the pairing interaction we add to
the mean field Hamiltonian the pairing part

Hmfmef_GPTPy PTZZaiaga (11)
k

where the coupling constant G is assumed to be

state independent and a and a, being the creation

and annihilation operators. The Hamiltonian (11) is
solved then within the independent quasiparticle
approximation.
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The explicit expression for the response function
Xuw(@) is  found directly from (6) after

straightforward though somewhat lengthy derivation

(n[ _nI)§5j2(Ek_Ej)2 =Ty
G (hw+il) —(E,—E))* * "

b

X (@)=

Z (ny + nJT —1)775j 2(E, + Ej)2
7 (ho+il\;)’ —(E, +E;)’

kj jk
FYEX, (12)

nl =1/(1+exp(E,/T)),

&; =Uu;—v,v; and u,, v, are coefficients of

where Mg =UV; +V, U;,

Bogolyubov - Valatin transformation.

In (12) the width T'; is the average width of the
two-quasiparticle Iy =((E,AT)+
+I'(E;, A, T))/2. The calculation of I" with pairing
included is discussed in detail in [11]. We would
mention only that in the presence of pairing no
analytical expression is available for the width
I'(E,,A,T) and this quantity is computed
numerically, 7"(E,)= I",(E)/(1+ ,(E)T,/c*), with

state,

I',(E) =1%J‘d52de3dg45(E +E,+E,+E,)x

0

x (mynyng +(1-ny)(1=n;)(1-n)).

(13)

For the I') and C the values I'j=33MeV,
c=20MeV are taken, (see [10]).

The  dependence of  collisional  width
I'(E=A,A,T) on the temperature for few fixed

values of pairing gap A is shown in Fig. 2.

0.3
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0.4 0.

T ( M e\/%
Fig. 2. The collisional width (13) taken at the Fermi
energy (E = A ) as function of the temperature. Different
curves correspond to different values of pairing gap A
indicated in the Figure.

One can see that with increasing A the value of
I' gets smaller. Eventually, this leads to the
suppression of the collective friction by pairing.
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This effect is clearly demonstrated in Fig. 3
where the friction coefficient, reduced friction
coefficient and the damping factor for QQ -mode

are shown as function of the temperature. As it is
seen from Fig.3 the friction coefficients
demonstrate kind of super fluidity. It is negligibly
small until the pairing gap would disappear at
critical temperature T, =(0,5-0,6) MeV . These

results are in qualitative agreement with the "onset
of dissipation" found experimentally in [13].
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Fig. 3. The QQ -friction coefficient y,, , reduced friction

coefficient Sy, =70o/Moe and the damping factor

nQszQQ/ZJCQQMQQ at the ground state (top) and

fission barrier (bottom) of **Th as function of
temperature. The dash curves show the results obtained
neglecting pairing.

The results of detailed numerical calculation of
the friction tensor for the system
®Ca+™ Pu=""114 given by three deformation
parameters o,a, and o, are shown in Fig. 4.
Because of the lack of space only most important
diagonal components of friction tensor are shown.
For convenience the friction coefficients were
divided by the wall formula value. Otherwise the
details of the structure of 7, , 7,, and y,, would

not be seen on the scale of Figure. The most
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important conclusion from Fig. 4 is that the values
of V,4s Vuo and y,, differ substantially from

wall

H ]/ aa ®
Yww, and 7, demonstrate not regular dependence

their wall formula counterparts. Unlike y

on the deformation. The period of fluctuations is
approximately the same as in case of the

deformation energy, thus one can attribute these
fluctuations to the effect of the shell structure. The
value and deformation dependence of the
corresponding components of mass tensor also differ
very much [15] from their macroscopic counterparts
(obtained within Werner - Wheeler method [8]).

=
e

Fig. 4. The diagonal components 7, , 7, and 7, , of friction tensor as function of deformation parameters & (left)

and a; in units of the wall formula value (right). The calculations are done for the compound system ***114
at the temperature T =0,5MeV .

Thus the results of dynamical computations using
macroscopic friction and mass parameters [7, 8] are
not reliable at least at low excitation energies.

The microscopic transport coefficients were used
recently in [16] where the two stage approach to the

22

description of fusion-fission reactions is suggested.
On each stage (fusion or fission) the three-
dimensional Langevin equation for the variables
describing the shape of nuclear system was solved.
The results obtained on the first stage are used as the
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input data for description of fission dynamics. In this
way it turned out possible to describe both fusion
and fission cross sections for the reaction
"0+ Pb, the energy and mass distribution of
fission fragments, the probability of the evaporation
residue formation, the dependence of pre-fission
neutron multiplicities on the fragment mass number.

The computations of the transport coefficients
shown above are rather time consuming. For
practical use in codes based on the Langevin
equation the simple analytical approximation is
highly desirable. The one of the most important
quantities in such calculations is the reduced friction
coefficient M . In Fig. 5 we show it on the left

hand panel as function of T together with the
following approximation, see [17],

h

2T2 2
hy . 2rsp(ﬂ,T) :i zT _0,6T"MeV
M I,

1+ 72°T3c> 1+T2/40

(14)

(T in MeV). The approximation (14) represents the
microscopic result quite well.
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Fig. 5. The reduced friction coefficient /M as function

of temperature: the microscopic results (solid curves) are
compared to the approximation (14) (dotted curves).

The analytical approximations of [17] were used
recently by [18] to describe the formation
probability of super heavy system. By examining the
long time behavior of the Fokker - Planck equation
for the distribution function it was shown that the
formation probability increase by few orders of
magnitude if microscopic transport coefficients are
used rather than those of the common picture.

4. The transport coefficients for rotating nuclei

The nuclear compound systems formed in the
result of fusion of heavy ions are commonly formed
with nonzero angular momentum. The effect of
rotation on the fusion or fission probability is
included at most in the calculation of the
macroscopic part of the deformation energy. The
possible dependence on rotation of the shell
correction as well as friction and inertia is
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completely ignored. However one might expect
some dependence of the transport coefficients on
rotation since the rotation changes considerably the
single-particle spectrum. To clarify this problem we
have carried out the calculation of transport
coefficients for rotating nuclei [19]. The
computations are preformed with two-center shell
model  which allows for rather flexible
parameterization of the shape around the touching
point and which was used earlier in dynamical
computations [20]. Due to technical reasons we had
to limit ourselves to the excitations above
T =1MeV where the pairing can be neglected.

By describing the rotating nuclei one usually
transforms the Hamiltonian from the laboratory co-
ordinate system to the body fixed (or intrinsic) co-
ordinate system. As the result, instead of the

Hamiltonian H(Q,) one has to consider the

Routhian operator

RQ,, 0,)=HQ,)-®,J% (15)

with ,, being the rotational frequency and J, -

the projection of angular momentum on the rotation
axes ( X -axes).

Like in the case without rotation we will use for
calculation of the potential energy the Strutinsky
shell correction method [4, 6]. Following [21, 22]

one can express the intrinsic energy E(Q,, I) as

EQ,, D=Epu(Q,, D+JREQ,, ), (16)

where E ;,(Q,, 1) is the liquid drop energy of
the shell

correction. In the case of finite temperature instead
of the shell correction to the intrinsic energy one has
to consider the shell correction to the free energy
OR=O6F=6R-T6S, where o6S is the shell
correction to the entropy.

The Fig. 6 shows the rotational dependence of the
liquid drop part of deformation energy. As it is seen
the rotational dependence of the deformation energy
is rather strong. The fission barrier disappears
completely at | ~ 607 for the nucleus **Th shown
in the figure. The effect of rotation on the fission
barriers is known for decades. The rotational
dependence of the shell correction is less clear. It is
assumed usually that this dependence is weak and
the shell correction is computed at @, _, =0 only. To
clarify this point we have computed the shell
correction for several values of | as a function of
deformation along the liquid drop fission valley of
**Th. Indeed, see Fig. 7, the fluctuation of SF is

rotating nucleus and OR(Q,,l1) is
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less then 1MeV for variation of | from zero to

I =607 . Very likely such weak dependence of oF
on | can be neglected.

10 ‘ Ho T s T Zo
zo (fm)
Fig. 6. The liquid drop deformation energy for

temperature T =1MeV as function of the deformation
parameter z,. The solid, dash, dotted-dash and dotted

lines correspond to the values of angular momentum equal
t0 0,20,40 and 607 .
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Fig. 7. The shell correction 6F =0R—-To S to the free
energy for temperature T =1MeV as function of the

deformation parameter z,. The solid, dash, dotted-dash

and dotted lines correspond to the values of the nuclear
angular momentum equal to 0, 20, 40 and 607 .

Like in the case without rotation the transport
coefficient of collective motion, can be derived
within the linear response theory [10] replacing the
mean field Hamiltonian by the Routhian (15). It
turns out however [19] that the friction » and mass

M  parameters for rotating nuclei are rather
sensitive to such fine effects as the violation of
rotational symmetry by Coriolis term —a, ,J,. For

the ground state deformation the spurious
contributions to collective friction and mass are (at
least) as large as those of physical importance. In
order to remove the spurious contributions we had to
modify the model of "stationary rotation" and to

24

introduce the time-dependent rotational frequency.
In this way we have obtained the friction and the
mass parameters, which demonstrate rather weak
dependence on the rotational frequency @, .

Fig. 8 shows the reduced friction coefficient
Bog =Vea/Myq at the saddle of **Th as the function

of temperature. The S, shown in Fig. 8 increase

with the temperature. This behavior is in a
qualitative agreement with that found in [13].

5.0 T

I **Th, saddle
4.0

3.0

v/M (MeV/h)

O T T T T T T
T (MeV)

Fig. 8. The reduced friction coefficient S, =y,/M,,
(left) versus temperature. The dotted, dash and solid

curves correspond to the values of the nuclear angular
momentum equal to 0, 40 and 60 7 .

5. Summary

The microscopic approach for the transport
coefficients (tensors of friction and inertia) for slow
collective motion is reviewed which accounts in a
natural way for the pairing interaction, shell effects
and collective rotation.

As an application of the theory, the numerical
results for the transport coefficients are presented for
few composite systems formed in the so-called
warm fusion reactions. It is demonstrated that both
friction and inertia show a sensible dependence on
the configurations of the mean field caused by the
shell effects as well as by avoided crossings of
single-particle levels. The dissipation decreases with
decreasing temperature and growing pairing gap and
falls well below the values of common "macroscopic
models".

The semi analytical expressions are suggested for
the temperature dependence of those combinations
of the transport coefficients, which govern the
fission process.

At the excitations corresponding to the
temperatures T >1MeV the shell correction to the

energy practically does not depend on nuclear
rotation. The friction and mass parameters obtained
within the linear response theory for the same
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excitations are rather stable with respect to rotations
provided that the contributions from the spurious
states arising due to the violation of rotational
symmetry are removed.

The author wishes to acknowledge the very
fruitful collaboration with Profs. H. Hofmann,
V. V. Pashkevich, S.Yamaji and G. . Kosenko
throughout which the main results presented here
were obtained.
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TPAHCHOPTHI KOE®IIIEHTHU MOBIJIBHOT'O KOJIEKTHBHOI'O PYXY

®. O. IBanOK

Byno BUBUEHO KOJEKTUBHHI PyX 130CKAJISIPHOTO TUILY NPH CKIHUCHHUX SHEPrisiX 30y/KEeHHs Ta 30Cepe/DKEHO yBary
Ha TIOBUIBHOMY 4Yepe3 HasBHICTb BETMKHX CHII TepTs pyci. [logaHo oris po3moBCIoKEHHS TeOopii Ha BUIIAIOK HU3BKUX
eHepriii 30y/DKeHHS, MPH SKUX BAXINBI 00OJOHKOBI eeKTH Ta mapHi Kopemamii. Takok po3rismaroTbes sapa, M0
obepraroThcs. SIK 3acTOCyBaHHSA TEOpPil pO3paxoBaHO TPAHCIIOPTHI KOCDIIlIEHTH IS KUTBKOX 00’€THAHUX CHCTEM, IO
YTBOPIOIOTHCS B TaK 3BAHUX PEAKLIAX TEIUIOTO 3JMTTS, AKi 3aCTOCOBYIOTHCS U CHHTE3Y HA/IBAYKKHX €JIEMEHTIB.
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TPAHCIIOPTHBIE KOO®®UIIUEHTHI MEJJUVIEHHOI'O KOJUIEKTUBHOI'O JBUKEHUS
@D. A. UBanrok

BbII0 M3y4eHO KOJUIEKTMBHOE JBM)KEHHE H30CKAISIPHOTO THIA IIPU KOHEYHBIX HHEPIHAX BO3OYKACHHS |
CKOHIICHTPUPOBAHO BHUMaHHE Ha MEIJIEHHOM H3-32 HAJIMUMS OOJNBIINX CHJI TPEHHMs ABMXeHUH. JlaH 0630p 0000meHns
TEOPHUH HA CIydald MajbIX SHEPrHid BO30YXICHHS, MPH KOTOPBIX CYHIECTBEHHBI 000sI0ueyHbIe 3((EKTH U MapHBIE
Koppemsuu. PaccmaTpuBaroTcsi Takke Bpammarompecs siapa. B kadecTBe INPUMEHEHHS TEOPHUHM PACCUUTAHBI
TPaHCTIOPTHBIE KO3((HUIMEHTH! T HEKOTOPBIX COCTaBHBIX CHCTEM, KOTOpBIE OOpa3yroTcs B TaK HA3bIBAEMbIX
PEaKLUsIX TEIIOr0 CIUAHUSI, HCIOIb3YEMBIX JUISl CHHTE3a CBEPXTSIKEIBIX JIEMEHTOB.
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