![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
The equation of state of symmetric and asymmetric nuclear matter
S. Shlomo1
1Cyclotron Institute, Texas A&M University, College Station, Texas, USA
Abstract: The equation of state (EOS) of nuclear matter is a very important ingredient in the study of nuclear properties, heavy ion collisions, neutron stars and supernova. Accurate assessment of the value of the incompressibility coefficient, K, of symmetric nuclear matter, which is directly related to the curvature of the EOS, is needed to extend our knowledge of the EOS in the vicinity of the saturation point. We review the current status of K as determined from experimental data on isoscalar giant monopole and dipole resonances (compression modes) in nuclei within the microscopic theory of mean-field-based random phase approximation.
References:1. Glendenning N. K. Phys. Rev. C 37 (1988) 2733. https://doi.org/10.1103/PhysRevC.37.2733
2. Satpathy L., Maheswari V. S. U., Nayak R. C. Phys. Rep. 319 (1999) 85. https://doi.org/10.1016/S0370-1573(99)00011-3
3. Von Oertzen W., Bohlen H. G., Khoa D. T. Nucl. Phys. A 722 (2003) C202. https://doi.org/10.1016/S0375-9474(03)01359-9
4. Natowitz J. B., Hagel K., Ma Y. et al. Phys. Rev. Lett. 89 (2002) 212701. https://doi.org/10.1103/PhysRevLett.89.212701
5. A. Bohr A., Mottelson B. M. Nuclear Structure II (New York: Benjamin, 1975).
6. Stringari S. Phys. Lett. B 108 (1982) 232. https://doi.org/10.1016/0370-2693(82)91182-0
7. Shlomo S., Bertsch G. F. Nucl. Phys. A 243 (1975) 507. https://doi.org/10.1016/0375-9474(75)90292-4
8. Shlomo S., Youngblood D. H. Phys. Rev. C 47 (1993) 529. https://doi.org/10.1103/PhysRevC.47.529
9. Clark H. L., Lui Y. -W., Youngblood D. H. Phys. Rev. C 63 (2001) 031301(R). https://doi.org/10.1103/PhysRevC.63.031301
10. Youngblood D. H., Clark H. L., Lui Y. W. Phys. Rev. C 69 (2004) 034315. https://doi.org/10.1103/PhysRevC.69.034315
11. Youngblood D. H., Clark H. L., Lui Y. W. Phys. Rev. C 69 (2004) 054312. https://doi.org/10.1103/PhysRevC.69.054312
12. Abrikosov A., Khalatnikov I. M. Rep. Prog. Phys. 22 (1959) 329. https://doi.org/10.1088/0034-4885/22/1/310
13. Kolomiets A., Kolomietz V. M., Shlomo S. Phys. Rev. Ñ 59 (1999) 3139. https://doi.org/10.1103/PhysRevC.59.3139
14. Vautherin D., Brink D. M. Phys. Rev. C 5 (1972) 626; https://doi.org/10.1103/PhysRevC.5.626
Beiner M. et al. Nucl. Phys. A 238 (1975) 29. https://doi.org/10.1016/0375-9474(75)90338-3
15. Bertsch G. F., Tsai S. F. Phys. Rep. 18 (1975) 125. https://doi.org/10.1016/0370-1573(75)90003-4
16. Bertsch G. F., Bortignon P. F., Broglia R. A. Rev. Mod. Phys. 55 (1983) 287. https://doi.org/10.1103/RevModPhys.55.287
17. Mahaux A., Bortignon P. F., Broglia R. A., Dasso C. H. Phys. Rep. 120 (1985) 1. https://doi.org/10.1016/0370-1573(85)90100-0
18. Reinhard P. -G., Toepffer C. Int. J. Mod. Phys. E 3 (1994) 435. https://doi.org/10.1142/S0218301394000139
19. Bender M., Heenen P. -H., Reinhard P. -G. Rev. Mod. Phys. 75 (2003) 121. https://doi.org/10.1103/RevModPhys.75.121
20. Gütter K., Wagner K., Reinhard P. -G., Toepffer C. Ann. Phys. 225 (1993) 339. https://doi.org/10.1006/aphy.1993.1061
21. Colò G., Bortignon P. F., Van Giai N. et al. Phys. Lett. B 276 (1992) 279. https://doi.org/10.1016/0370-2693(92)90318-X
22. Marty N. et al. Nucl. Phys. A 230 (1975) 93;
Harakeh M. N. et al. Phys. Rev. Lett. 38 (1977) 676; https://doi.org/10.1103/PhysRevLett.38.676
Youngblood D. H. et al. Phys. Rev. Lett. 39 (1977) 1188. https://doi.org/10.1103/PhysRevLett.39.1188
23. Blaizot J. P. Phys. Rep. 64 (1980) 171. https://doi.org/10.1016/0370-1573(80)90001-0
24. Morsch H. P., Rogge M., Turek P., Mayer-Boricke C. Phys. Rev. Lett. 45 (1980) 337. https://doi.org/10.1103/PhysRevLett.45.337
25. Djalali C., Marty N., Morlet M., Willis A. Nucl. Phys. A 380 (1982) 42. https://doi.org/10.1016/0375-9474(82)90581-4
26. Dumitrescu T. S., Serr F. E. Phys. Rev. C 27 (1983) 811. https://doi.org/10.1103/PhysRevC.27.811
27. Davis B. et al. Phys. Rev. Lett. 79 (1997) 609. https://doi.org/10.1103/PhysRevLett.79.609
28. Ma Zhongyu, Giai Nguyen Van, Toki Hiroshi. Phys. Rev. C 55 (1997) 2385. https://doi.org/10.1103/PhysRevC.55.2385
29. Ma Zhongyu, Giai Nguyen Van, Wandelt A., Vretenar D. Nucl. Phys. A 686 (2001) 173. https://doi.org/10.1016/S0375-9474(00)00523-6
30. Vretenar A., Niksic T., Ring P. Phys. Rev. C 68 (2003) 024310. https://doi.org/10.1103/PhysRevC.68.024310
31. Giai Nguyen Van, Bortignon P. F., Colo G. et al. Nucl. Phys. A 687 (2001) 44. https://doi.org/10.1016/S0375-9474(01)00599-1
32. Niksic T., Vretenar D., Ring P. Phys. Rev. C 66 (2002) 064302. https://doi.org/10.1103/PhysRevC.66.064302
33. Shlomo S., Sanzhur A. I. Phys. Rev. C 65 (2002) 044310; https://doi.org/10.1103/PhysRevC.65.044310
Shlomo S. Pramana. J. Phys. 2001. 57 (2001) 557. https://doi.org/10.1007/s12043-001-0062-4
34. Reinhard P. -G. Ann. Phys. 1 (1992) 632. https://doi.org/10.1002/andp.19925040805
35. Nakatsukasa T., Yabana K. Phys. Rev. C 71 (2005) 024301. https://doi.org/10.1103/PhysRevC.71.024301
36. Blaizot J. P., Burger J. F., Decharge J., Girod N. Nucl. Phys. A 591 (1995) 435. https://doi.org/10.1016/0375-9474(95)00294-B
37. Terasaki J., Engel J., Bender M. et al. Phys. Rev. C 71 (2005) 034310. https://doi.org/10.1103/PhysRevC.71.034310
38. Agrawal B. K., Shlomo S., Sanzhur A. I. Phys. Rev. C 67 (2003) 034314. https://doi.org/10.1103/PhysRevC.67.034314
39. Agrawal B. K., Shlomo S. Phys. Rev. C 70 (2004) 014308. https://doi.org/10.1103/PhysRevC.70.014308
40. Piekarewicz J. Phys. Rev. C 62 (2000) 051304(R). https://doi.org/10.1103/PhysRevC.62.051304
41. Gorelik M. L., Shlomo S., Urin M. H. Phys. Rev. Ñ 62 (2000) 044301. https://doi.org/10.1103/PhysRevC.62.044301
42. Kolomiets A., Pochivalov O., Shlomo S. Progress in Research (Cyclotron Institute, Texas A&M University, April 1, 1998 - March 31, 1999) III-1.
43. Colò G., Giai Nguyen Van, Bortignon P. F., Quaglia M. R. Phys. Lett. B 485 (2000) 362. https://doi.org/10.1016/S0370-2693(00)00725-5
44. Abrosimov V. I., Dellafiore A., Matera F. Nucl. Phys. A 697 (2002) 748. https://doi.org/10.1016/S0375-9474(01)01273-8
45. Bertsch G. F. Suppl. Progr. Theor. Phys. 74 (1983) 115. https://doi.org/10.1143/PTPS.74.115
46. Satchler G. R. Direct Nuclear Reactions (Oxford: Oxford University Press, 1983).
47. Satchler G. R., Khoa D. T. Phys. Rev. C 55 (1997) 285. https://doi.org/10.1103/PhysRevC.55.285
48. Sil T., Shlomo S., Agrawal B. K., Reinhard P. -G. Phys. Rev. C 73 (2006) 034316. https://doi.org/10.1103/PhysRevC.73.034316
49. Fayans S. A., Trykov E. L., Zawischa D. Nucl. Phys. A 568 (1994) 523. https://doi.org/10.1016/0375-9474(94)90392-1
50. Péru S., Berger J. F., Bortignon P. F. Eur. Phys. J. A 26 (2005) 25. https://doi.org/10.1140/epja/i2005-10149-4
51. Reinhard P. -G. Nucl. Phys. A 646 (1999) 305. https://doi.org/10.1016/S0375-9474(99)00076-7
52. Giai Nguyen Van, Sagawa H. Phys. Lett. B 106 (1981) 379. https://doi.org/10.1016/0370-2693(81)90646-8
53. Kolomiets A., Pochivalov O., Shlomo S. Phys. Rev. C 61 (2000) 034312. https://doi.org/10.1103/PhysRevC.61.034312
54. Liu K. -F., Lou H. -D., Ma Z. -Y., Shen Q. -B. Nucl. Phys. A 534 (1991) 1; https://doi.org/10.1016/0375-9474(91)90555-K
Nucl. Phys. A 534 (1991) 25. https://doi.org/10.1016/0375-9474(91)90556-L
55. Agrawal B. K., Shlomo S., Kim Au V. Phys. Rev. C 72 (2005) 014310. https://doi.org/10.1103/PhysRevC.72.014310
56. Vretenar A., Wandelt A., Ring P. Phys. Lett. B 487 (2000) 334. https://doi.org/10.1016/S0370-2693(00)00827-3
57. Lalazissis A., Konig J., Ring P. Phys. Rev. C 55 (1997) 540. https://doi.org/10.1103/PhysRevC.55.540
58. Uchida M. et al. Phys. Rev. C 69 (2004) 056201. https://doi.org/10.1103/PhysRevE.69.056201
59. Itoh M. et al. Phys. Rev. C 68 (2003) 035107. https://doi.org/10.1103/PhysRevB.68.035107
60. Agrawal B. K., Shlomo S., Kim Au V. Phys. Rev. C 68 (2003) 031304(R). https://doi.org/10.1103/PhysRevC.68.031304
61. Piekarewicz J. Phys. Rev. C 66 (2002) 034305. https://doi.org/10.1103/PhysRevC.66.034305