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The equation of state (EOS) of nuclear matter is a very important ingredient in the study of nuclear properties, heavy
ion collisions, neutron stars and supernova. Accurate assessment of the value of the incompressibility coefficient, K,
of symmetric nuclear matter, which is directly related to the curvature of the EOS, is needed to extend our knowledge of

the EOS in the vicinity of the saturation point. We review the current status of K as determined from experimental data
on isoscalar giant monopole and dipole resonances (compression modes) in nuclei within the microscopic theory of

mean-field-based random phase approximation.
1. Introduction

It is well-known that the EOS, E/A=E(p), of
symmetric nuclear matter (SNM) is a very important
ingredient in the study of nuclear properties, heavy
ion collisions, neutron stars and supernova.
Experimentally, we have accurate data on the
saturation point (p,,E(p,)) of the EOS. From
electron and hadron scattering experiments on
nuclei, one finds a constant central density of
p,=0.16 fm~

empirical mass formula, we have E(p,) =-16 MeV

and from the extrapolation of

for SNM. Since at saturation d—E =0, one has,
dp Po
1 2
E(p)=E(p)+—K| 22+, ()
18 Lo
where
d*(E/A
K=9p; TEN @
dp Po

is the SNM incompressibility coefficient. Therefore,
a very accurate value of K is needed to extend our
knowledge of the EOS in the vicinity of the
saturation point.

There have been many attempts over the years to
determine the value of K by considering properties
of nuclei which are sensitive to a certain extent to K
(see Ref. [1]). In a macroscopic approach analysis of
experimental data of a certain physical quantity, K
appears in the expression for the physical quantity
and the value of K is determined by a direct fit to
the data. In a microscopic approach, one considers
various effective two-body interactions which are
associated with different value of K but reproduce
experimental data of various properties of nuclei,
such as binding energies and radii. One then
determines the effective interaction which best fit
the experimental data for a physical quantity which
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is sensitive to K. We mention, in particular, the
attempts [1-4] of considering the physical
quantities; nuclear masses, nuclear radii, nuclear
scattering cross sections, supernova collapses,
masses of neutron stars, heavy ion collisions and the

interaction parameters F, and F in Landau’s Fermi

liquid theory for nuclear matter. Here we examine
the most sensitive method [5, 6] which is based on
experimental data on the strength function
distributions of the isoscalar giant monopole
resonance (ISGMR), T =0, L =0, and the isoscalar
giant dipole resonance (ISGDR), T=0,L=1,
which are compression modes of nuclei, analyzed
within microscopic theory of mean-field based
random phase approximation (RPA) [7].

Over the last three decades, a significant amount
of experimental work was carried out to identify
strength distributions of the ISGMR and ISGDR in a
wide range of nuclei [8 - 11]. The main experimental
tool for studying isoscalar giant resonances is
inelastic o-particle scattering since o-particles are
selective as to exciting isoscalar modes. The current
high precision experimental facilities make it
possible to measure the centroid energy E, of the

ISGMR with an error of 0E; ~0.1-0.3 MeV [10,

11]. Using the approximate relation
(0K)/K =2(0E,)/E, and, for example, the recent

experimental value of E, =13.96+0.20 MeV for

the ISGMR in **®Pb, one has an error of
0K=6-9 MeV for K=200-300 MeV. This
enhanced experimental precision calls for a critical
accuracy check of the theoretical calculations.

The extraction of the incompressibility
coefficient K from experimental data on ISGMR is
not straightforward. The static incompressibility
coefficient K of Eq. (2) describes the propagation
of the first sound excitations in nuclear matter
having the sound velocity

c=c, =vJK/9m. 3)



S. SHLOMO

However the propagation of the first sound
implies the regime of frequent inter-particle
collisions [12] which is not realized in cold and
moderately heated nuclei, where the compression
modes are related to the zero sound (rare inter-
particle collisions) regime. In general, the sound
velocity C is a complicated function of both the
incompressibility  coefficient K and the
dimensionless collisional parameter (r, where 7 is
the relaxation time. This complicated dependence of
the sound velocity of the compression modes (and
thereby the eigenenergy of the ISGMR or ISGDR)
on K is caused by the dynamic distortion of the
Fermi surface which accompanies the collective
motion in a Fermi liquid. In a cold nuclear matter,
for the rare collision regime @7 —> o0, one has,
instead of Eq. (3), the relation

c=c, =+vK'/9m, 4)

where K’ is a strongly renormalized
incompressibility coefficient [13]
K'~3K. 5)

The Fermi-surface distortion effects increase the
incompressibility coefficient. This increase of the
incompressibility coefficient leads to an increase of

the energy E, of the ISGMR. However, it can be

shown [13] that the consistent presence of the same
FSD effects in the boundary condition strongly

suppresses the increase of E; and thus the centroid

energy of the ISGMR, the lowest isoscalar giant
monopole resonance in the Fermi-liquid drop, is
close to the one obtained in the usual liquid drop
model where the FSD effects are not taken into
account. We point out that the Fermi-surface
distortion effects are completely washed out from
the dynamic incompressibility coefficient K’ and
from the corresponding boundary condition for the
breathing mode in the case of the scaling
assumption for the displacement field y(r,t),

taken in the form y(r,t)=a(t)r (Tassie model).

Note also that the effect of the Fermi surface
distortion in the boundary condition is rather small
for the overtone excitations. The dynamic and
relaxation effects on the ISGMR and on the ISGDR
are significantly different. In contrast to the
ISGMR, which is the lowest breathing mode, the
ISGDR appears as the overtone to the lowest
isoscalar dipole excitation, which corresponds to a
spurious center of mass motion. Due to this fact,

the energy of the ISGDR, E,, varies with 7 much
faster than the energy E, of the ISGMR. This

feature can be used to improve the agreement
between the theoretical values of the ratio E/E; to

the experimental data.

There have been several attempts [8] in the past
to determine K by a least square (LS) fit to the
ISGMR data of various sets of nuclei using a semi-

empirical expansion in power of A’ of the
nucleus incompressibility coefficient, K, , obtained

from E, using, for example, the scaling model

assumption. It was found [8] that the value deduced
for K wvaried significantly, depending on the set of
data of the ISGMR energies used in the fit. This is
mainly due to the limited number of nuclei in which

E, is known. We also point out that the scaling

model assumption is not very reliable for medium
and light nuclei.

The basic theory for the microscopic description
of different modes of giant resonances is the
Hartree-Fock(HF) based RPA [5, 7]. Self-consistent
HF calculations using Skyrme type interactions [14],
which are density and momentum dependent contact
(delta) interactions, have been very successful in
reproducing experimental data on ground state
properties of nuclei. The nuclear response function
is evaluated within the (continuum) RPA, i.e., small
amplitude oscillation [7, 15]. We emphasize that the

values of E, and E, are sensitive, although not

directly related to the value of K which is
associated with the effective nucleon-nucleon
interaction adopted in the HF-RPA calculations, and
thus can be used to extract an accurate value for K.
It is important to point out that the HF-RPA method
optimizes the collective modes in the space of one-
particle-one-hole (1ph) excitations. Correlations,

associated with excitations of 2ph and higher

structures, are not accounted for explicitly. The
effects of these correlations have been discussed in
the literature, see for example the reviews in Refs.
[16 - 18]. The main effect is a collisional broadening
of the strength distributions which can be
accompanied by a certain shift of the resonance peak
position. This shift grows with excitation energy and
can be of the order of 1 MeV for the rather high
lying isovector modes (in the range above 20 MeV).
However, the Skyrme interactions, commonly
employed in nuclear HF and RPA calculations, are
effective forces which incorporate already a great
deal of correlations [19]. This reduces the
correlation effects on the peak positions of the
collective modes [18, 20]. Therefore, for modes with
moderate excitation energy around and below 15
MeV, such as the ISGMR, the net effect is of the
order of a tenth of MeV [21].
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The experimental identification of the ISGMR in
*®Pb at excitation energy of E, =13.7 MeV [22]

provided a very important source of information for
K since the excitation energy of the ISGMR is
sensitive to K. Random phase approximation
(RPA) calculations using existing or modified
effective interactions having K =210+£30 MeV
were in agreement with experiment [23]. We point
out, however, that in these early investigations (i)
only a limited class of effective interactions were
explored. (ii) For a certain interaction, calculations
of the strength distribution of the ISGMR were
carried out only for a limited number of nuclei in
which experimental data on the ISGMR was
available.

The study of isoscalar giant dipole resonance
(ISGDR) is very important since this compression
mode provides an independent source of information
on K. Early experimental investigation of the

ISGDR in **Pb resulted in a value of E, ~21 MeV

for the centroid energy [24, 25]. It was first pointed
out in [26] that corresponding HF-RPA results for

E obtained with interactions adjusted to

reproduced experimental values of E,, are higher

19

than the experimental value by more than 3 MeV
and thus this discrepancy between theory and
experiment raises some doubts concerning the
unambiguous extraction of K from energies of

. .. . 208
compression modes. A similar result for E; in ™ Pb

was obtained in more recent experiments [27, 9].
Therefore, the value of K deduced from these early
experimental data on ISGDR is significantly smaller
than that deduced from ISGMR data.

The relativistic mean field based RPA (to be
referred to as RRPA) calculations, with the neglect
of contributions from negative-energy sea, yielded
for K a value in the range of 280—350 MeV [28].
Recent RRPA calculations [29, 30], with the
inclusion of negative-energy states in the response
function, yield a value of K =250-270 MeV.
Note that since an uncertainty of about 20 % in the
values of K is tantamount to an uncertainty of 10 %

in the value of E, the discrepancy in the value of

K obtained from relativistic and non-relativistic
models is quite significant in view of the accuracy of
about 2% in the experimental data currently
available on the ISGMR centroid energies. It has
been claimed in recent studies [31, 32] that these
significant differences are due to the model
dependence of K.

On the theoretical side, the experimental data
pose a challenge to theory [26] to understand the
conflicting results for K deduced from the data on
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the ISGMR and the data on the ISGDR; (i) the
discrepancy associated with the values of E;, and

E, and (ii) the discrepancy associated with the

relativistic and non-relativistic models.

It was first pointed out in [33] that, although not
always stated in the literature, self-consistency is
commonly violated in actual implementation of HF
based RPA theory for determining the strength

functions S(E) and transition densities p, of giant

resonances. Therefore it is important to assess the
consequences of common violations of self-
consistency. We also point out that it is quite
common in theoretical work on giant resonances to
calculate S(E) for a certain simple scattering
operator F whereas in the analysis of experimental
data of the excitation cross section o(E) one
carries out  distorted-wave-Born-approximation
(DWBA) calculations with a transition potential
oU obtained from a collective model transition
density p,,, using the folding model approximation.
Therefore, it is important to examine the relation
between S(E) and the excitation cross section

o(E) of the ISGMR and the ISGDR, obtained by

o-scattering, using the folding model DWBA
method with p, obtained from HF based RPA.

In Section 2 we review the basic elements of
microscopic HF based RPA theory for the strength
function and the FM-DWBA method for the
calculation of the excitation cross sections of giant
resonances by inelastic a-scattering. In section 3, we
provide some results of the consequences of
violations of self-consistency on the calculated
strength function S(E), the excitation cross section

o(E) and recent results of fully self consistent HF
based RPA calculations of the centroid energies ( E,

and E;) for the ISGMR and ISGDR. We also

present simple explanations for the discrepancies in
the value deduced for K. Our conclusions are given
in section 4.

2. Formalism
2.1 Self-Consistent HF-RPA Approach

In the microscopic and self-consistent Hartree-
Fock (HF) base random-phase-approximation (RPA)
approach one starts by adopting specific effective

nucleon-nucleon interaction, V,,, such as the

Skyrme type interaction, with parameters
determined by a fit to experimental data of a wide
range of nuclei on nuclear masses, charge and mass
density distributions, etc. The properties of the giant
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resonances are then calculated within the self-
consistent HF-RPA approach by solving the RPA
equation using the particle-hole (p-h) interaction

Vph which corresponds to V,,. Various numerical

methods have been adopted in the literature to solve
the RPA equations, see for example Refs. [7, 15, 23,
34, 35]. In particular, in the Green’s function
approach [7, 15] one evaluates the RPA Green’s
function G,

G=G,(1+V,G,)™", (6)

where G, is the free p-h Green’s function. Then, the
strength function S(E) and the transition density

P » associated with the scattering operator

A
F=> f(r), (7
i=1
are obtained from

S(E) =Y )(0|F|n)[ 6(E-E,) =ilm [Tr(fGHY], (8)

ImG(r',r E)}dr )

f
pi(rE)= WI (r)[

Note that p,(I,E), as defined in (9), is associated

with the strength in the region of E+AE/2 and is
consistent with

2

S(E)=|[p(r.E)f (| /4B (10)

In fully self-consistent HF-RPA calculations, the
spurious state (associated with the center of mass
motion) T =0, L=1 appears at zero excitation
energy (E =0) and no spurious state mixing (SSM)
in the ISGDR occurs. However, although not always
stated in the literature, many actual implementations
of HF-RPA (and relativistic RPA) are not fully self-
consistent [33], see however Refs. [34 - 40]. One
usually makes the following approximations: (i)

limiting the p-h space in a discretized calculation by

max
ph >

parameter (i.e., a Lorenzian with [772), and (iii)
neglecting the two-body Coulomb and spin-orbit
interactions in Vph. Each of these approximations

a cut-off energy E (i1) introducing a smearing

may shift the centroid energies of giant resonances
and introduce a SSM in the ISGDR.

It was shown in Refs. [33, 41, 42] (see also [43,
44]) that in order to correct for the effects of the
SSM on S(E) and the transition density one should

10

A

replace the scattering operator F = z f(r,), by the
i=1

projection operator

A
:Z fl](ri): F_UFD

i=1

(11

with f =f-»f where f(r)=f(r),,(«2) and
f,(r)=rY,, (£). The value of 7 is obtained from
the coherent spurious state transition density [45]

0
pu(N =2, a_er (), (12)

where p, is the ground state density of the nucleus,
by

n=fp )/ {fp). (13)

To determine p, for the ISGDR one first uses
(9), with fﬂ and obtain p”(r) and then projects out

the spurious contribution which is proportional to
P (1)

pt(r)zpq(r)_apss’ =<f1p’7> < 1pss> (14)
Using (12) and (13) with f(r)= f,(r)=r’,, (2),
adopted in the calculations for the ISGDR, one has

that 7 =§<r2>.

2.2 DWBA Calculations of Excitation Cross-Section

The folding model approach [46] to the
evaluation of optical potentials appears to be quite
successful and, at present, is extensively used in
theoretical descriptions of aparticle scattering [47].
The main advantage of this approach is that it
provides a direct link to the description of aparticle
scattering reactions based on microscopic HF-RPA
results.

The DWBA differential cross section for the
excitation of a giant resonance by inelastic o-

scattering, a+ N — a + N ", is given by,
dO_DWBA u 2 k )
= Ll IR (15)
de \2z0%) K

where g is the reduced mass and k; and Kk, are the

initial and final linear momenta of the o-nucleus
relative motion, respectively. The transition matrix

element T is given by,
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Tq= <Z(f_)yjf |V|Zi(+)l]ji> ) (16)

where V is the a-nucleon interaction, Y, and ¥,

are the initial and final states of the nucleus and
(+

Xi
functions of the relative a-nucleus relative motion,
respectively. To calculate T, Eq. (16), one can

) and ;(f) are the corresponding distorted wave

adopt the following approach which is usually
employed by experimentalists. First, assuming that

W, and ¥, are known, the integrals in Eq. (16)

over the coordinates of the nucleons are carried out
to obtain the transition potential

U ~ [V, (17)
Second, the cross section
dG H ’ kf =) 2
de [Zﬂ'hzj k. Klf | |Z. > (18)

is calculated using a certain DWBA code with oU
and the optical potential U (') as input.

Within the FM approach, the optical potential
U (r) is given by

U(r)=[drv(r-r

P (MNP (r'),  (19)

where V (|r - r’|, P£,(r") is the a-nucleon interaction

and p,(r') is the ground state HF density of a
spherical target nucleus. To obtain the results given
in the following, both the real and imaginary parts of
the o-nucleon interaction were chosen to have
Gaussian forms with density dependence [47]

_\r—r’\z

V(r=r].p () =-V(1+8,p (e =

Jr—r’\z

W (1+ 4,00 (M)e ™ .

The parameters V, A, «,, W, f,, &, in
Eq. (20) were determined by a fit to the elastic
scattering data. The radial form 6U, (r,E) of the

transition potential, for a state with the multi-
polarity L and excitation energy E, is obtained

(20)

from

SU(r,E) = [dr'dp (r',E)x

(r=r ()
Opy (1)

oV
|V (Jr=r1, o (r) + po(r') ,(21)
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where Jp, (r',E) is the transition density for the
considered state.

We point out that within the “microscopic”
folding model approach to the a-nucleus scattering,
both p, and p, , which enter Egs. (19) and (21), are
obtained from the self-consistent HF-RPA
calculations. Within the “macroscopic” approach,
one adopts collective transition densities, PO,
which are assumed to have energy-independent

radial shapes and are obtained from the ground state
density using a collective model.

Another approach for evaluating T., usually
employed in theoretical calculations, is to first

integrate over the relative a-nucleus coordinates to
obtain the scattering operator

O~ [ 27V (22)
and then calculate the matrix element
<¥,|O|¥, > within a theoretical model for ‘¥,
and ¥, . We emphasize that it is quite common in
theoretical work to adopt for (22) the operator of Eq.
(7), with a very simple scattering operator such as
f(r)~rtY,, (0,4), where L is the multi-polarity of

the excitation, and evaluate the strength function
S(E). Therefore, for a proper comparison between

experimental and theoretical results for S(E), one

should adopt the "microscopic" folding model
approach in the DWBA calculations of o(E).

3. Results and Discussion
3.1 Consequences of Violation of Self-Consistency

Very recently, the effects of common violations
[33] of self consistency in HF based RPA
calculations of S(E) and p, of various giant

resonances were investigated in detail, see for
example Refs. [37 - 39, 48 - 50]. In the following we
present some results of these investigations to
demonstrate the importance of carrying out fully self
consistent calculations. In Table 1, we show results
for isoscalar giant resonances (L=0, 1 and 2)
obtained within the HF based discretized and
continuum RPA frameworks for *Zr (N =Z =40)
[38]. The two-body interaction V,, was taken to be

of a simplified Skyrme type

V,, = 8(r, —rz){to +ét3p“ (‘”T"ZH 23)

11
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where a=1/3, t, =—1800 MeV - fm?*
t, =12871 MeV - fm>“"" . For these values of the

interaction parameters the symmetric nuclear matter
equation of state has a minimum at
E/A=-15.99 MeV, 0, =0.157 fm™ with
K =226 MeV. It is seen from Table 1 that for an
accuracy of ~0.1 MeV in the values of the centroid
energies, the maximum particle-hole excitation
should be larger than 200 MeV.

and

max
energy, ER*,

Table 1. Dependence of the spurious state
(T =0,L=1)energy E, and the centroid energies E,
of isoscalar multipole giant resonances (L =0, 1 and
2), in MeV, on the value of EJ™ (in MeV) adopted in

HF - Discretized RPA calculations for * Zr using the
interaction of Eq. (23)

ErThax = E, E, E,

50 4.7 23.92 35.34 16.11
75 33 23.51 35.76 15.51
100 2.9 23.25 35.66 15.14
200 1.5 23.09 35.55 14.82
400 1.0 23.02 35.51 14.73
600 0.9 23.02 35.51 14.72
00 0.7 23.01 35.46 14.70

* The corresponding HF — Continuum RPA results are
placed in the last row (taken from [38]).

In Fig. 1, we present results of recent calculations
of S(E) for isoscalar giant resonances of *** Pb with
multi-polarities L=0-3 using the fully self-
consistent method described in Ref. [34, 51]. The
realistic SGII interactions [52] were used. It is seen
(see also Ref. [48]) from Figure 1 that the effects of
violation of self-consistency due to the neglect of the
particle-hole (p-h) spin-orbit (LS) or p-h Coulomb
interactions (CO) in the RPA calculations are most
significant for the ISGMR. For the ISGMR in ** Pb
the shift in the centroid energy E; is about 0.8 MeV,
which is 3 times larger than the experimental
uncertainty. We note that a shift of 0.8 MeV in E,

correspond to a shift of about 25 MeV in K .
3.2 Nuclear Compressibility from ISGMR and ISGDR

In [53, 33], numerical calculations were carried
out for the S(E), p,(r) within the HF-RPA theory
and for o(E) using the FM-DWBA method. The
SL1 Skyrme interaction [54], which is associated
with K =230 MeV, was employed. The corrections
for the effects of SSM in the ISGDR was carried out
as described in section 2.1. The density dependent
Gaussian a-nucleon interaction of Eq. (20) was used

12

with parameters adjusted to reproduce the elastic

cross section, with p, taken from the HF
calculations, see Refs. [53, 33] for details.
—;; [ l()gl T T | T T T T I T T T T I T T T T | T T T T i
% 8 — sc |
’i of Pb (IS) sl
Saf Cco .
é 2 S L=0
« 0 [ L ¥ TR B ... ) " _
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T,-\ C T T 171 I T T 171 I T T 171 I T T 171 I L I T T 171 I T T 171 ]
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E (MeV)

Fig. 1. Isoscalar strength functions of **Pb for L =0-3
multi-polarities are displayed. SC (full line) corresponds
to the fully self-consistent calculation where LS (dashed
line) and CO (open circle) represent the calculations
without the ph spin-orbit and Coulomb interactions in the
RPA, respectively. The Skyrme interaction SGII [52] was
used (taken from [48]).

In Fig. 2 we present results of microscopic
calculations of the fraction of the energy weighted
sum rule, ES(E)JEWSR, and the excitation cross

section o(E) of the ISGDR in ''° Sn by 240 MeV

o-particle scattering, carried out within the
microscopic HF based RPA and the FM-DWBA
theory. It is seen from the upper panel that the use of
the collective model transition densities p,,

increases the EWSR by about 15 %. However, the
shifts in the centroid energies are small (a few
percents), similar in magnitude to the current
experimental uncertainties. It was first pointed out in
[33] that an important result of the calculation is that
the maximum cross section for the ISGDR decreases
strongly at high energy and may drops below the
experimental sensitivity for excitation energy above
30 MeV. This high excitation energy region contains
about 20 % of the EWSR. This missing strength
leads to a reduction of about 3.0 MeV in the ISGDR
energy which significantly reduces the discrepancy
between theory and experiment.

SIAEPHA ®I3UKA TA EHEPTETHUKA Ne3 (21) 2007



THE EQUATION OF STATE

0.12
116gn E1TO
0.09 ¢t .
I
’\
;1
.06} Ao

ES(E) / EWSR
o

o

.03+ N \

40

do/ddE (mb/sr MeV)

1000

750

500 +
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Fig. 2. Reconstruction of the ISGDR EWSR in '"°Sn
from the inelastic a-particle cross sections. Middle panel:
maximum double differential cross section obtained from
o, (RPA). Lowest panel: maximum cross section (0°

degrees) obtained with p,, (dashed line) and p, (solid

line) normalized to 100 % of the EWSR. Upper panel:
The solid and dashed lines are the ratios of the middle
panel curve with the solid and dashed lines of the lower
panel, respectively (taken from [33]).

In Table 2, we give the results of fully self-
consistent HF-RPA calculations for the ISGDR

centroid energy (E,) obtained (see [48]) using the

SGII [52] and KDEO [55] interactions and compare
them with the RMF based RPA results of Ref. [56]
for the NL3 interaction [57] and with the
experimental data. Note that the HF-RPA values for
E, are larger than the corresponding experimental
values of the early measurements of [9, 24, 25, 27]
by more than 3 MeV. The more recent results of [10,
11, 58, 59], seems to confirm the prediction of [33].
The recent experimental values of E, are

significantly closer to the theoretical values (within
2 MeV).

3.3 Compressibility in Relativistic
and Nonrelativistic Models

To properly compare between the predictions of
the relativistic and the non-relativistic models,
parameter sets for Skyrme interaction were
generated in [60] by a least square fitting procedure
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Table 2°. Fully self-consistent HF-RPA results [48]
for ISGDR centroid energy (in MeV) obtained
using the interactions SGII [S2] and KDEO [S5]
and compared with the RRPA results obtained
[56] with the NL3 interaction [57]

Nucleus | @, —®, | Experiment | NL3 | SGII | KDEO
N Zr 18-50| 25.7+0.7* | 32. | 28.8 | 29.1
26.740.5°
26.9+0.7°
oSy | 18-45| 23.040.6* | 29. [27.4| 28.0
25.540.6°
25.440.5°
“Sm | 18-45 26.5 (264 | 27.3
24.5+0.4°
25.0+40.3°
0pp | 16-40| 19.9+0.8* | 26.0 | 24.1 | 24.7
22.240.5°
22.7+0.2°
K (MeV) 272 | 215 | 229
J (MeV) 37.4 (268 33.0

*Also given are the corresponding values of the
nuclear matter incompressibility, K, and the symmetry
energy, J, coefficients. The range of integration @, — @,

is given in the second column. The experimental data are
from a) [9], b) [10], ¢) [11], d) [58], and ) [59].

using exactly the same experimental data for the
bulk properties of nuclei considered in [57] for
determining the NL3 parameterization of an
effective Lagrangian used in the relativistic mean
field (RMF) models. The center of mass correction
to the total binding energy, finite size effects of the
protons and Coulomb energy were calculated in a
way similar to that employed in determining the
NL3 parameter set in [57]. Further, the values of the
symmetry energy coefficient J and the charge rms

radius of the ** Pb nucleus were constrained to be
very close to 37.4 MeV and 5.50 fm, respectively, as
obtained with the NL3 interaction, and K was fixed
in the vicinity of NL3 value of K =271.76 MeV. In
particular, the Skyrme interactions SK272 and
SK255, having K =272 and 255 MeV, respec-
tively, were generated in [60].

In Table 3, we present the results of fully self-
consistent HF-RPA calculations for the ISGMR
centroid energy (E,) obtained [48] using the SGII
[52], KDEO [55] and the SK255 [60] interactions
and compare them with the RMF based RPA results
[31] for the NL3 interaction and with the
experimental data. Within the non relativistic
microscopic HF based RPA theory, the new Skyrme
interaction SK255, yields for the ISGMR centroid
energies values which are quite close to the RRMF
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Table 3". Fully self-consistent HF-RPA results [48]
for the ISGMR centroid energy (in MeV)
obtained using the interactions SK255 [60], SGII
[52] and KDEO [55] and compared with the
RRPA results obtained [31] with the NL3
interaction [57]

Nucleus |®, — @, | Experiment [NL3|SK255|SGII [KDEO
N 7r 0-60 18.7(18.90 (17.89]18.03
10-35[17.81%0.30 18.85117.87|17.98

"°Sn | 0-60 17.1{17.31 |16.3616.58
10 -35[15.85+0.20 17.33116.38|16.61

Sm [ 0-60 16.1{16.21 (15.26|15.46
10 -35[15.40% 0.40 16.19|15.22|15.44

%pp | 0-60 14.2|14.34 (13.57|13.79
10-35[13.96+ 0.20 14.38 |13.58|13.84

K

(MeV) 272 255 | 215 | 229
J (MeV) 37.4| 37.4 |126.8| 33.0

*Also given are the corresponding values of the
nuclear matter incompressibility, K, and the symmetry
energy, J, coefficients. The range of integration o, —,

is given in the second column. The experimental data are
from [10, 11].

results obtained for the NL3 interaction. Moreover,
for the SK255 interaction one finds a good
agreement with experimental data for E; for all the
nuclei considered, provided that the corresponding
excitation energy ranges used in determining E, are

the same as those used in obtaining the experimental
data. One thus concludes that contrary to the
statements made in [31, 32] the difference in the
values of K obtained in the relativistic and non-
relativistic models is not due to model dependence.
It is mainly due to the differences in the values of
the symmetry energy coefficient (J ) and its slope
associated with these models (see also [61]).

4. Conclusions

We have presented results of microscopic
calculations of the strength function, S(E), within

the fully self consistent HF-RPA approach, and of
o-particle excitation cross sections o(E), using the

folding model DWBA, for the isoscalar giant
monopole resonance (ISGMR) and the isoscalar
giant dipole resonance (ISGDR). An accurate and a
general method to eliminate the contributions of
spurious state mixing in the ISGDR was employed
in the -calculations. Considering the status of
determining the value of the nuclear matter
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incompressibility coefficient, K, from data on the
compression modes ISGMR and ISGDR of nuclei,
we conclude that:

(i) Recent improvement in experimental
technique led to the identification of the ISGMR in
light and medium nuclei and the observation of the
ISGDR in nuclei. Currently the centroid energy E,

of the ISGMR can be deduced experimentaly with
very small uncertainty of about 0.2 MeV, which
corresponds to an uncertainty of about 7 MeV in the
extracted value of K .

(i) The maximum cross section for the ISGDR
decreases very strongly at high excitation energy and
may drops below the current experimental
sensitivity for excitation energies above 30 and 26
MeV for ''°Sn and ** Pb, respectively. This leads to
a missing experimental strength for the ISGDR at
high energy and explained the discrepancy between
theory and early experimental data concerning the
centroid energy E, of the ISGDR. This prediction

was confirmed in recent experiments [10, 11].
However, more accurate experimental data on the
ISGDR is very much needed.

(iii) Common violations of self-consistency in
HF based RPA calculations of the strength
functions of giant resonances may result in shifts in
the calculated values of the centroid energies which
are significantly larger in magnitude than the
current experimental uncertainties. Thus, it is
important to carry out fully self-consistent HF-RPA
calculations in order to extract an accurate value of
K from experimental data on the ISGMR and
ISGDR.

(iv) It is possible to build bona fide Skyrme
forces so that the incompressibility is close to the
relativistic value.

(v) Fully self-consistent calculations of the
ISGMR using Skyrme forces lead to the conclusion
that K =240+ 20 MeV. The uncertainty of about 20
MeV in the value of K is mainly due to the
uncertainty in the value of the nuclear matter
symmetry energy J and its slope.
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PIBHSIHHSI CTAHY CUMETPUYHOI TA ACUMETPUYHOI SIIEPHOI MATEPII
1. Hlaomo

Pipusinas crany (PC) snepHOi martepii € ay)ke Ba>KIHBOIO CKJIAJOBOIO Y BHBUCHHI BIIACTUBOCTEH sEp, 3ITKHEHb
BaXXKHUX 10HIB, HEHTPOHHUX 3ipPOK Ta HAIHOBHUX. AKypaTHa OLIHKA BEJIMYUHHU MOAYJIS CTUCKAHHA CHMETPUYHOI SAepPHOT
Mmatepii K , mo Hanpsimy moB’si3aHa 3 KpuBu3HOIO PC, HeoOXiqHa I pO3MIUPEHHs HAIUX ysBieHb npo PC mobnusy
TOYKH HACHUYCHHS. PO31"J'I$II[3€T])CH Cy‘laCHI/lﬁ CTaH 3aﬂa'-li BU3HAYCHHS K 3 CKCHIEPUMCHTAJIbHUX AAaHUX I10 FiFaHTCI)KI/lX
MOHOIIOJIBHUX Ta JUIIOJbHUX pE30HaHCax (MOIOM CTHCHEHHS) B sJpax y paMKax HaONMKeHHS BHUIAIKoBHX (a3,
1o0yI0BaHOT'O Ha OCHOBI MIKPOCKOIIIYHOI T€Opii CepeAHBOTO MOJIS.

YPABHEHUE COCTOSIHUSI CUMMETPUYHON U ACUMMETPUYHOMN HI[EPHOI71 MATEPHUH
1. laomo

YpasHenue cocrosiHus (YC) simepHON MaTepuu ABJSIETCS OUCHb Ba)KHBIM MHIPEIUEHTOM B H3Y4EHHU CBOMCTB siAE,
CTOJIKHOBEHHM TSDKEJIBIX MOHOB, HEUTPOHHBIX 3BE3J M CBEPXHOBBIX. AKKypaTHas OLIEHKA BEIHMUYMHBI MOJYJIS CHKATHUS
CUMMETPHYHOM sifiepHOi Martepuu K , KoTopas HampsMylo cBsizaHa ¢ kpuBu3Ho#H YC, HeoOXoauMma Uil pacIIMpeHus
Hamux mnpencraBieHuid o0 YC BONM3M TOYKHM HachllleHWs. PaccMaTpuBaeTcs COBPEMEHHOE COCTOSIHHE 3a/lau
ompezeneHuss K W3 3KCIEpUMEHTANBHBIX JAaHHBIX 10 TUTAHTCKUM MOHOIIOJIBHBIM U JAWNOJBHBIM pe30HaHCaM (MOJbI
CKaTHs) B sIpaXx B paMKax NPUOIMMKEHUsS CIy4alHbIX (a3, MMOCTPOEHHOTO Ha 0a3e MHMKPOCKOIIMYECKOH TeopHuu
CPEIHErO MOJIA.
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