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The equation of state (EOS) of nuclear matter is a very important ingredient in the study of nuclear properties, heavy 

ion collisions, neutron stars and supernova. Accurate assessment of the value of the incompressibility coefficient, K , 
of symmetric nuclear matter, which is directly related to the curvature of the EOS, is needed to extend our knowledge of 
the EOS in the vicinity of the saturation point. We review the current status of K  as determined from experimental data 
on isoscalar giant monopole and dipole resonances (compression modes) in nuclei within the microscopic theory of 
mean-field-based random phase approximation. 
 

1. Introduction 
 
It is well-known that the EOS, ( )E A E ρ/ = , of 

symmetric nuclear matter (SNM) is a very important 
ingredient in the study of nuclear properties, heavy 
ion collisions, neutron stars and supernova. 
Experimentally, we have accurate data on the 
saturation point ( 0 0( )Eρ ρ, ) of the EOS. From 
electron and hadron scattering experiments on 
nuclei, one finds a constant central density of 

0 0 16ρ = .  fm 3−  and from the extrapolation of 
empirical mass formula, we have 0( ) 16 MeVE ρ = −  

for SNM. Since at saturation 
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is the SNM incompressibility coefficient. Therefore, 
a very accurate value of K  is needed to extend our 
knowledge of the EOS in the vicinity of the 
saturation point.  

There have been many attempts over the years to 
determine the value of K  by considering properties 
of nuclei which are sensitive to a certain extent to K  
(see Ref. [1]). In a macroscopic approach analysis of 
experimental data of a certain physical quantity, K  
appears in the expression for the physical quantity 
and the value of K  is determined by a direct fit to 
the data. In a microscopic approach, one considers 
various effective two-body interactions which are 
associated with different value of K  but reproduce 
experimental data of various properties of nuclei, 
such as binding energies and radii. One then 
determines the effective interaction which best fit 
the experimental data for a physical quantity which 

is sensitive to K . We mention, in particular, the 
attempts [1 - 4] of considering the physical 
quantities; nuclear masses, nuclear radii, nuclear 
scattering cross sections, supernova collapses, 
masses of neutron stars, heavy ion collisions and the 
interaction parameters 0F  and 1F  in Landau’s Fermi 
liquid theory for nuclear matter. Here we examine 
the most sensitive method [5, 6] which is based on 
experimental data on the strength function 
distributions of the isoscalar giant monopole 
resonance (ISGMR), 0 0T L= , = , and the isoscalar 
giant dipole resonance (ISGDR), 0 1T L= , = , 
which are compression modes of nuclei, analyzed 
within microscopic theory of mean-field based 
random phase approximation (RPA) [7].  

Over the last three decades, a significant amount 
of experimental work was carried out to identify 
strength distributions of the ISGMR and ISGDR in a 
wide range of nuclei [8 - 11]. The main experimental 
tool for studying isoscalar giant resonances is 
inelastic α-particle scattering since α-particles are 
selective as to exciting isoscalar modes. The current 
high precision experimental facilities make it 
possible to measure the centroid energy 0E  of the 
ISGMR with an error of 0 ~ 0.1 0.3Eδ −  MeV [10, 
11]. Using the approximate relation 

0 0( ) 2( )K K E Eδ δ/ = /  and, for example, the recent 
experimental value of 0 13 96 0 20E = . ± .  MeV for 
the ISGMR in 208 Pb , one has an error of 

6 9Kδ = −  MeV for 200 300K = −  MeV. This 
enhanced experimental precision calls for a critical 
accuracy check of the theoretical calculations.  

The extraction of the incompressibility 
coefficient K  from experimental data on ISGMR is 
not straightforward. The static incompressibility 
coefficient K  of Eq. (2) describes the propagation 
of the first sound excitations in nuclear matter 
having the sound velocity  

 

1 9c c K m= = / .                    (3) 
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However the propagation of the first sound 
implies the regime of frequent inter-particle 
collisions [12] which is not realized in cold and 
moderately heated nuclei, where the compression 
modes are related to the zero sound (rare inter-
particle collisions) regime. In general, the sound 
velocity c  is a complicated function of both the 
incompressibility coefficient K  and the 
dimensionless collisional parameter ωτ , where τ  is 
the relaxation time. This complicated dependence of 
the sound velocity of the compression modes (and 
thereby the eigenenergy of the ISGMR or ISGDR) 
on K  is caused by the dynamic distortion of the 
Fermi surface which accompanies the collective 
motion in a Fermi liquid. In a cold nuclear matter, 
for the rare collision regime ωτ →∞ , one has, 
instead of Eq. (3), the relation  

 

mKcc 9/0 ′== ,                      (4) 
 
where K ′  is a strongly renormalized 
incompressibility coefficient [13]  
 

KK 3≈′ .                              (5) 
 
The Fermi-surface distortion effects increase the 

incompressibility coefficient. This increase of the 
incompressibility coefficient leads to an increase of 
the energy 0E  of the ISGMR. However, it can be 
shown [13] that the consistent presence of the same 
FSD effects in the boundary condition strongly 
suppresses the increase of 0E  and thus the centroid 
energy of the ISGMR, the lowest isoscalar giant 
monopole resonance in the Fermi-liquid drop, is 
close to the one obtained in the usual liquid drop 
model where the FSD effects are not taken into 
account. We point out that the Fermi-surface 
distortion effects are completely washed out from 
the dynamic incompressibility coefficient K ′  and 
from the corresponding boundary condition for the 
breathing mode in the case of the scaling 
assumption for the displacement field ( )tχ ,r , 
taken in the form ( ) ( )t tχ α, =r r  (Tassie model). 
Note also that the effect of the Fermi surface 
distortion in the boundary condition is rather small 
for the overtone excitations. The dynamic and 
relaxation effects on the ISGMR and on the ISGDR 
are significantly different. In contrast to the 
ISGMR, which is the lowest breathing mode, the 
ISGDR appears as the overtone to the lowest 
isoscalar dipole excitation, which corresponds to a 
spurious center of mass motion. Due to this fact, 
the energy of the ISGDR, 1E , varies with τ  much 
faster than the energy 0E  of the ISGMR. This 

feature can be used to improve the agreement 
between the theoretical values of the ratio 1 0E E/  to 
the experimental data.  

There have been several attempts [8] in the past 
to determine K  by a least square (LS) fit to the 
ISGMR data of various sets of nuclei using a semi-
empirical expansion in power of 1 3A− /  of the 
nucleus incompressibility coefficient, AK , obtained 
from 0E  using, for example, the scaling model 
assumption. It was found [8] that the value deduced 
for K  varied significantly, depending on the set of 
data of the ISGMR energies used in the fit. This is 
mainly due to the limited number of nuclei in which 

0E  is known. We also point out that the scaling 
model assumption is not very reliable for medium 
and light nuclei.  

The basic theory for the microscopic description 
of different modes of giant resonances is the 
Hartree-Fock(HF) based RPA [5, 7]. Self-consistent 
HF calculations using Skyrme type interactions [14], 
which are density and momentum dependent contact 
(delta) interactions, have been very successful in 
reproducing experimental data on ground state 
properties of nuclei. The nuclear response function 
is evaluated within the (continuum) RPA, i.e., small 
amplitude oscillation [7, 15]. We emphasize that the 
values of 0E  and 1E  are sensitive, although not 
directly related to the value of K  which is 
associated with the effective nucleon-nucleon 
interaction adopted in the HF-RPA calculations, and 
thus can be used to extract an accurate value for K . 
It is important to point out that the HF-RPA method 
optimizes the collective modes in the space of one-
particle-one-hole (1ph ) excitations. Correlations, 
associated with excitations of 2 ph  and higher 
structures, are not accounted for explicitly. The 
effects of these correlations have been discussed in 
the literature, see for example the reviews in Refs. 
[16 - 18]. The main effect is a collisional broadening 
of the strength distributions which can be 
accompanied by a certain shift of the resonance peak 
position. This shift grows with excitation energy and 
can be of the order of 1 MeV for the rather high 
lying isovector modes (in the range above 20 MeV). 
However, the Skyrme interactions, commonly 
employed in nuclear HF and RPA calculations, are 
effective forces which incorporate already a great 
deal of correlations [19]. This reduces the 
correlation effects on the peak positions of the 
collective modes [18, 20]. Therefore, for modes with 
moderate excitation energy around and below 15 
MeV, such as the ISGMR, the net effect is of the 
order of a tenth of MeV [21].  
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The experimental identification of the ISGMR in 
208 Pb at excitation energy of 0 13 7E = .  MeV [22] 
provided a very important source of information for 
K  since the excitation energy of the ISGMR is 
sensitive to K . Random phase approximation 
(RPA) calculations using existing or modified 
effective interactions having 210 30K = ±  MeV 
were in agreement with experiment [23]. We point 
out, however, that in these early investigations (i) 
only a limited class of effective interactions were 
explored. (ii) For a certain interaction, calculations 
of the strength distribution of the ISGMR were 
carried out only for a limited number of nuclei in 
which experimental data on the ISGMR was 
available.  

The study of isoscalar giant dipole resonance 
(ISGDR) is very important since this compression 
mode provides an independent source of information 
on K . Early experimental investigation of the 
ISGDR in 208 Pb resulted in a value of 1 ~ 21E  MeV 
for the centroid energy [24, 25]. It was first pointed 
out in [26] that corresponding HF-RPA results for 

1E , obtained with interactions adjusted to 
reproduced experimental values of 0E , are higher 
than the experimental value by more than 3 MeV 
and thus this discrepancy between theory and 
experiment raises some doubts concerning the 
unambiguous extraction of K  from energies of 
compression modes. A similar result for 1E  in 208 Pb 
was obtained in more recent experiments [27, 9]. 
Therefore, the value of K  deduced from these early 
experimental data on ISGDR is significantly smaller 
than that deduced from ISGMR data.  

The relativistic mean field based RPA (to be 
referred to as RRPA) calculations, with the neglect 
of contributions from negative-energy sea, yielded 
for K  a value in the range of 280 350−  MeV [28]. 
Recent RRPA calculations [29, 30], with the 
inclusion of negative-energy states in the response 
function, yield a value of 250 270K = −  MeV. 
Note that since an uncertainty of about 20 % in the 
values of K  is tantamount to an uncertainty of 10 % 
in the value of 0E , the discrepancy in the value of 
K  obtained from relativistic and non-relativistic 
models is quite significant in view of the accuracy of 
about 2 % in the experimental data currently 
available on the ISGMR centroid energies. It has 
been claimed in recent studies [31, 32] that these 
significant differences are due to the model 
dependence of K .  

On the theoretical side, the experimental data 
pose a challenge to theory [26] to understand the 
conflicting results for K  deduced from the data on 

the ISGMR and the data on the ISGDR; (i) the 
discrepancy associated with the values of 0E  and 

1E  and (ii) the discrepancy associated with the 
relativistic and non-relativistic models.  

It was first pointed out in [33] that, although not 
always stated in the literature, self-consistency is 
commonly violated in actual implementation of HF 
based RPA theory for determining the strength 
functions ( )S E  and transition densities tρ  of giant 
resonances. Therefore it is important to assess the 
consequences of common violations of self-
consistency. We also point out that it is quite 
common in theoretical work on giant resonances to 
calculate ( )S E  for a certain simple scattering 
operator F  whereas in the analysis of experimental 
data of the excitation cross section ( )Eσ  one 
carries out distorted-wave-Born-approximation 
(DWBA) calculations with a transition potential 

Uδ  obtained from a collective model transition 
density collρ  using the folding model approximation. 
Therefore, it is important to examine the relation 
between ( )S E  and the excitation cross section 

( )Eσ  of the ISGMR and the ISGDR, obtained by 
α-scattering, using the folding model DWBA 
method with tρ  obtained from HF based RPA.  

In Section 2 we review the basic elements of 
microscopic HF based RPA theory for the strength 
function and the FM-DWBA method for the 
calculation of the excitation cross sections of giant 
resonances by inelastic α-scattering. In section 3, we 
provide some results of the consequences of 
violations of self-consistency on the calculated 
strength function ( )S E , the excitation cross section 

( )Eσ  and recent results of fully self consistent HF 
based RPA calculations of the centroid energies ( 0E  
and 1E ) for the ISGMR and ISGDR. We also 
present simple explanations for the discrepancies in 
the value deduced for K . Our conclusions are given 
in section 4.  

 
2. Formalism 

 
2.1 Self-Consistent HF-RPA Approach 

 
In the microscopic and self-consistent Hartree-

Fock (HF) base random-phase-approximation (RPA) 
approach one starts by adopting specific effective 
nucleon-nucleon interaction, 12V , such as the 
Skyrme type interaction, with parameters 
determined by a fit to experimental data of a wide 
range of nuclei on nuclear masses, charge and mass 
density distributions, etc. The properties of the giant 
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resonances are then calculated within the self-
consistent HF-RPA approach by solving the RPA 
equation using the particle-hole (p-h) interaction 

phV  which corresponds to 12V . Various numerical 
methods have been adopted in the literature to solve 
the RPA equations, see for example Refs. [7, 15, 23, 
34, 35]. In particular, in the Green’s function 
approach [7, 15] one evaluates the RPA Green’s 
function G ,  

 
1

0 0(1 )phG G V G −= + ,                  (6) 
 

where 0G  is the free p-h Green’s function. Then, the 
strength function ( )S E  and the transition density 

tρ , associated with the scattering operator 
 

1

( )
A

i
i

F f
=

= ,∑ r                          (7) 

 

are obtained from  
 

2 1( ) 0 ( )n
n

S E F n E Eδ
π

= − =∑ Im [Tr(fGf)], (8) 

 
1( , ) ( ) Im ( , , ) .

( )t
Er E f r G r r E dr

S E E
∆ρ

π∆
⎡ ⎤′ ′ ′= ⎢ ⎥⎣ ⎦∫  (9) 

 
Note that ( )t r Eρ , , as defined in (9), is associated 
with the strength in the region of 2E E± ∆ /  and is 
consistent with  
 

2
( ) ( , ) ( ) / .tS E r E f r dr Eρ ∆= ∫        (10) 

 
In fully self-consistent HF-RPA calculations, the 

spurious state (associated with the center of mass 
motion) 0T = , 1L =  appears at zero excitation 
energy ( 0E = ) and no spurious state mixing (SSM) 
in the ISGDR occurs. However, although not always 
stated in the literature, many actual implementations 
of HF-RPA (and relativistic RPA) are not fully self-
consistent [33], see however Refs. [34 - 40]. One 
usually makes the following approximations: (i) 
limiting the p-h space in a discretized calculation by 
a cut-off energy max

phE , (ii) introducing a smearing 
parameter (i.e., a Lorenzian with 2Γ/ ), and (iii) 
neglecting the two-body Coulomb and spin-orbit 
interactions in phV . Each of these approximations 
may shift the centroid energies of giant resonances 
and introduce a SSM in the ISGDR.  

It was shown in Refs. [33, 41, 42] (see also [43, 
44]) that in order to correct for the effects of the 
SSM on ( )S E  and the transition density one should 

replace the scattering operator 
1

( )
A

i
i

F f
=

= ∑ r , by the 

projection operator 
 

1
1

( )
A

i
i

F f F Fη η η
=

= = − ,∑ r           (11) 

 
with 1f f fη η= −  where 1( ) ( ) ( )Mf f r Y Ω=r  and 

1 1( ) ( )Mf rY Ω=r . The value of η  is obtained from 
the coherent spurious state transition density [45] 
 

0
1( ) ( )ss a Mr Y

r
ρ

ρ α Ω
∂

= ,
∂

            (12) 
 

where 0ρ  is the ground state density of the nucleus, 
by  
 

1/ss ssf fη ρ ρ= .                 (13) 
 

To determine tρ  for the ISGDR one first uses 
(9), with fη  and obtain ( )rηρ  and then projects out 
the spurious contribution which is proportional to 

( )ss rρ  
 

( ) ( )t ssr rηρ ρ αρ= − ,      1 1/ ssf fηα ρ ρ= . (14) 
 

Using (12) and (13) with 3
3 1( ) ( ) ( )Mf r f r r Y Ω= = , 

adopted in the calculations for the ISGDR, one has 

that 25
3

rη = .  

 
2.2 DWBA Calculations of Excitation Cross-Section 

 
The folding model approach [46] to the 

evaluation of optical potentials appears to be quite 
successful and, at present, is extensively used in 
theoretical descriptions of αparticle scattering [47]. 
The main advantage of this approach is that it 
provides a direct link to the description of αparticle 
scattering reactions based on microscopic HF-RPA 
results.  

The DWBA differential cross section for the 
excitation of a giant resonance by inelastic α-
scattering, N Nα α ∗+ → + , is given by,  

 
2

2

22

DWBA
f

fi
i

kd T
d k
σ µ
Ω π

⎛ ⎞= ,⎜ ⎟
⎝ ⎠=

         (15) 

 

where µ  is the reduced mass and ik  and fk  are the 

initial and final linear momenta of the α-nucleus 
relative motion, respectively. The transition matrix 
element fiT  is given by,  
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( ) ( )
fi f f i iT Vχ Ψ χ Ψ− += ,             (16) 

 

where V  is the α-nucleon interaction, iΨ  and fΨ  
are the initial and final states of the nucleus and 

( )
iχ
+  and ( )

fχ
−  are the corresponding distorted wave 

functions of the relative α-nucleus relative motion, 
respectively. To calculate fiT , Eq. (16), one can 
adopt the following approach which is usually 
employed by experimentalists. First, assuming that 

iΨ  and fΨ  are known, the integrals in Eq. (16) 
over the coordinates of the nucleons are carried out 
to obtain the transition potential  
 

~ f iU Vδ Ψ Ψ∗∫ .                    (17) 
 

Second, the cross section  
 

2
2

( ) ( )
22

f
f i

i

kd U
d k
σ µ χ δ χ
Ω π

− +⎛ ⎞= ⎜ ⎟
⎝ ⎠=

     (18) 

 

is calculated using a certain DWBA code with Uδ  
and the optical potential ( )U r  as input.  

Within the FM approach, the optical potential 
( )U r  is given by  

 

0 0( ) ( , ( )) ( )U r dr V r r r rρ ρ′ ′ ′ ′= −∫ ,        (19) 
 

where 0( , ( ))V r r rρ′ ′−  is the α-nucleon interaction 
and 0 ( )rρ ′  is the ground state HF density of a 
spherical target nucleus. To obtain the results given 
in the following, both the real and imaginary parts of 
the α-nucleon interaction were chosen to have 
Gaussian forms with density dependence [47] 
 

2

2 / 3
0 0( , ( )) (1 ( )) V

VV r V r e αρ β ρ
′−

−
′ ′ ′− = − + −

r r

r r  
 

2

2 / 3
0(1 ( )) W

WiW r e αβ ρ
′−

−
′+

r r

.              (20) 
 

The parameters V ,  Vβ ,  Vα , W ,  Wβ ,  Wα  in 
Eq. (20) were determined by a fit to the elastic 
scattering data. The radial form ( )LU r Eδ ,  of the 
transition potential, for a state with the multi-
polarity L  and excitation energy E,  is obtained 
from 

 

( , ) ( , )LU r E dr r Eδ δρ′ ′= ×∫  
 

0
0 0

0

( , ( ))
( , ( )) ( )

( )
V r r r

V r r r r
r
ρ

ρ ρ
ρ
′ ′⎡ ⎤∂ −

′ ′ ′× − +⎢ ⎥′∂⎣ ⎦
, (21) 

where ( , )L r Eδρ ′  is the transition density for the 
considered state.  

We point out that within the ”microscopic” 
folding model approach to the α-nucleus scattering, 
both 0ρ  and Lρ , which enter Eqs. (19) and (21), are 
obtained from the self-consistent HF-RPA 
calculations. Within the “macroscopic” approach, 
one adopts collective transition densities, collρ , 
which are assumed to have energy-independent 
radial shapes and are obtained from the ground state 
density using a collective model.  

Another approach for evaluating fiT , usually 
employed in theoretical calculations, is to first 
integrate over the relative α-nucleus coordinates to 
obtain the scattering operator 

 
( ) ( )~ f iO Vχ χ− ∗ +∫                       (22) 

 
and then calculate the matrix element 

f iOΨ Ψ< | | >  within a theoretical model for iΨ  

and fΨ . We emphasize that it is quite common in 
theoretical work to adopt for (22) the operator of Eq. 
(7), with a very simple scattering operator such as 

( ) ~ ( , )L
LMf r r Y θ φ , where L  is the multi-polarity of 

the excitation, and evaluate the strength function 
( )S E . Therefore, for a proper comparison between 

experimental and theoretical results for ( )S E , one 
should adopt the "microscopic" folding model 
approach in the DWBA calculations of ( )Eσ . 
 

3. Results and Discussion 
 

3.1 Consequences of Violation of Self-Consistency 
 

Very recently, the effects of common violations 
[33] of self consistency in HF based RPA 
calculations of ( )S E  and tρ  of various giant 
resonances were investigated in detail, see for 
example Refs. [37 - 39, 48 - 50]. In the following we 
present some results of these investigations to 
demonstrate the importance of carrying out fully self 
consistent calculations. In Table 1, we show results 
for isoscalar giant resonances ( 0 1L = ,  and 2) 
obtained within the HF based discretized and 
continuum RPA frameworks for 80 Zr ( 40N Z= = ) 
[38]. The two-body interaction 12V  was taken to be 
of a simplified Skyrme type  

 

1 2
12 1 2 0 3

1( )
6 2

V t t αδ ρ
+⎡ ⎤⎛ ⎞= − + ,⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

r rr r     (23) 
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where 1 3α = / , 0 1800t = −  MeV ⋅ fm 3  and 

3 12871t =  MeV ⋅ fm 3( 1)α+ . For these values of the 
interaction parameters the symmetric nuclear matter 
equation of state has a minimum at 

15 99E A/ = − .  MeV, 0 0 157ρ = .  fm 3−  with 
226K =  MeV. It is seen from Table 1 that for an 

accuracy of 0 1.∼  MeV in the values of the centroid 
energies, the maximum particle-hole excitation 
energy, max

phE , should be larger than 200 MeV.   
 
Table 1∗. Dependence of the spurious state 
( 0 1T L= , = ) energy ssE  and the centroid energies LE  
of isoscalar multipole giant resonances ( L = 0, 1 and 
2), in MeV, on the value of max

phE  (in MeV) adopted in 

HF – Discretized RPA calculations for 80 Zr using the 
interaction of Eq. (23)  

 
∗ The corresponding HF – Continuum RPA results are 

placed in the last row (taken from [38]). 
 
In Fig. 1, we present results of recent calculations 

of ( )S E  for isoscalar giant resonances of 208 Pb with 
multi-polarities 0 3L = −  using the fully self-
consistent method described in Ref. [34, 51]. The 
realistic SGII interactions [52] were used. It is seen 
(see also Ref. [48]) from Figure 1 that the effects of 
violation of self-consistency due to the neglect of the 
particle-hole (p-h) spin-orbit (LS) or p-h Coulomb 
interactions (CO) in the RPA calculations are most 
significant for the ISGMR. For the ISGMR in 208 Pb 
the shift in the centroid energy 0E  is about 0.8 MeV, 
which is 3 times larger than the experimental 
uncertainty. We note that a shift of 0.8 MeV in 0E  
correspond to a shift of about 25 MeV in K . 

 
3.2 Nuclear Compressibility from ISGMR and ISGDR 

 
In [53, 33], numerical calculations were carried 

out for the ( )S E , ( )t rρ  within the HF-RPA theory 
and for ( )Eσ  using the FM-DWBA method. The 
SL1 Skyrme interaction [54], which is associated 
with 230K =  MeV, was employed. The corrections 
for the effects of SSM in the ISGDR was carried out 
as described in section 2.1. The density dependent 
Gaussian α-nucleon interaction of Eq. (20) was used 

with parameters adjusted to reproduce the elastic 
cross section, with 0ρ  taken from the HF 
calculations, see Refs. [53, 33] for details.  

 

 
 

Fig. 1. Isoscalar strength functions of 208 Pb  for 0 3L = −  
multi-polarities are displayed. SC (full line) corresponds 
to the fully self-consistent calculation where LS (dashed 
line) and CO (open circle) represent the calculations 
without the ph spin-orbit and Coulomb interactions in the 
RPA, respectively. The Skyrme interaction SGII [52] was 
used (taken from [48]). 

 
In Fig. 2 we present results of microscopic 

calculations of the fraction of the energy weighted 
sum rule, ES(E)/EWSR, and the excitation cross 
section ( )Eσ  of the ISGDR in 116 Sn by 240 MeV 
α-particle scattering, carried out within the 
microscopic HF based RPA and the FM-DWBA 
theory. It is seen from the upper panel that the use of 
the collective model transition densities collρ  
increases the EWSR by about 15 %. However, the 
shifts in the centroid energies are small (a few 
percents), similar in magnitude to the current 
experimental uncertainties. It was first pointed out in 
[33] that an important result of the calculation is that 
the maximum cross section for the ISGDR decreases 
strongly at high energy and may drops below the 
experimental sensitivity for excitation energy above 
30 MeV. This high excitation energy region contains 
about 20 % of the EWSR. This missing strength 
leads to a reduction of about 3.0 MeV in the ISGDR 
energy which significantly reduces the discrepancy 
between theory and experiment.  

max
phE  ssE  0E  1E  2E  

50 4.7 23.92 35.34 16.11 
75 3.3 23.51 35.76 15.51 

100 2.9 23.25 35.66 15.14 
200 1.5 23.09 35.55 14.82 
400 1.0 23.02 35.51 14.73 
600 0.9 23.02 35.51 14.72 
∞  0.7 23.01 35.46 14.70 
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Fig. 2. Reconstruction of the ISGDR EWSR in 116 Sn 
from the inelastic α-particle cross sections. Middle panel: 
maximum double differential cross section obtained from 

tρ  (RPA). Lowest panel: maximum cross section (0° 
degrees) obtained with collρ  (dashed line) and tρ  (solid 
line) normalized to 100 % of the EWSR. Upper panel: 
The solid and dashed lines are the ratios of the middle 
panel curve with the solid and dashed lines of the lower 
panel, respectively (taken from [33]). 

 
In Table 2, we give the results of fully self-

consistent HF-RPA calculations for the ISGDR 
centroid energy ( 1E ) obtained (see [48]) using the 
SGII [52] and KDE0 [55] interactions and compare 
them with the RMF based RPA results of Ref. [56] 
for the NL3 interaction [57] and with the 
experimental data. Note that the HF-RPA values for 

1E  are larger than the corresponding experimental 
values of the early measurements of [9, 24, 25, 27] 
by more than 3 MeV. The more recent results of [10, 
11, 58, 59], seems to confirm the prediction of [33]. 
The recent experimental values of 1E  are 
significantly closer to the theoretical values (within 
2 MeV).  

 

3.3 Compressibility in Relativistic  
and Nonrelativistic Models 

 

To properly compare between the predictions of 
the relativistic and the non-relativistic models, 
parameter sets for Skyrme interaction were 
generated in [60] by  a least square fitting procedure  

 
∗ Also given are the corresponding values of the 

nuclear matter incompressibility, K , and the symmetry 
energy, J , coefficients. The range of integration 1 2ω ω−  
is given in the second column. The experimental data are 
from a) [9], b) [10], c) [11], d) [58], and e) [59]. 

 
using exactly the same experimental data for the 
bulk properties of nuclei considered in [57] for 
determining the NL3 parameterization of an 
effective Lagrangian used in the relativistic mean 
field (RMF) models. The center of mass correction 
to the total binding energy, finite size effects of the 
protons and Coulomb energy were calculated in a 
way similar to that employed in determining the 
NL3 parameter set in [57]. Further, the values of the 
symmetry energy coefficient J  and the charge rms 
radius of the 208 Pb nucleus were constrained to be 
very close to 37.4 MeV and 5.50 fm, respectively, as 
obtained with the NL3 interaction, and K  was fixed 
in the vicinity of NL3 value of 271 76K = .  MeV. In 
particular, the Skyrme interactions SK272 and 
SK255, having K  = 272 and 255 MeV, respec-
tively, were generated in [60].  

In Table 3, we present the results of fully self-
consistent HF-RPA calculations for the ISGMR 
centroid energy ( 0E ) obtained [48] using the SGII 
[52], KDE0 [55] and the SK255 [60] interactions 
and compare them with the RMF based RPA results 
[31] for the NL3 interaction and with the 
experimental data. Within the non relativistic 
microscopic HF based RPA theory, the new Skyrme 
interaction SK255, yields for the ISGMR centroid 
energies  values  which  are quite close to the RRMF  

Table 2∗. Fully self-consistent HF-RPA results [48] 
for ISGDR centroid energy (in MeV) obtained 
using the interactions SGII [52] and KDE0 [55] 
and compared with the RRPA results obtained 
[56] with the NL3 interaction [57] 
 
Nucleus 1 2ω ω− Experiment NL3 SGII KDE0

90 Zr  18 - 50 25.7 0 7a± .  32. 28.8 29.1 
  26.7 0 5b± .     
  26.9 0 7d± .     

116 Sn  18 - 45 23.0 0 6a± .  29. 27.4 28.0 
  25.5 0 6c± .     
  25.4 0 5d± .     

144 Sm  18 - 45  26.5 26.4 27.3 
  24.5 0 4c± .     
  25.0 0 3e± .     

208 Pb  16 - 40 19.9 0 8a± .  26.0 24.1 24.7 
  22.2 0 5c± .     
  22.7 0 2d± .     

K  (MeV)   272 215 229 
J  (MeV)   37.4 26.8 33.0 
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∗Also given are the corresponding values of the 

nuclear matter incompressibility, K , and the symmetry 
energy, J , coefficients. The range of integration 1 2ω ω−  
is given in the second column. The experimental data are 
from [10, 11]. 

 
results obtained for the NL3 interaction. Moreover, 
for the SK255 interaction one finds a good 
agreement with experimental data for 0E  for all the 
nuclei considered, provided that the corresponding 
excitation energy ranges used in determining 0E  are 
the same as those used in obtaining the experimental 
data. One thus concludes that contrary to the 
statements made in [31, 32] the difference in the 
values of K  obtained in the relativistic and non-
relativistic models is not due to model dependence. 
It is mainly due to the differences in the values of 
the symmetry energy coefficient ( J ) and its slope 
associated with these models (see also [61]).  

 
4. Conclusions 

 
We have presented results of microscopic 

calculations of the strength function, ( )S E , within 
the fully self consistent HF-RPA approach, and of 
α-particle excitation cross sections ( )Eσ , using the 
folding model DWBA, for the isoscalar giant 
monopole resonance (ISGMR) and the isoscalar 
giant dipole resonance (ISGDR). An accurate and a 
general method to eliminate the contributions of 
spurious state mixing in the ISGDR was employed 
in the calculations. Considering the status of 
determining the value of the nuclear matter 

incompressibility coefficient, K , from data on the 
compression modes ISGMR and ISGDR of nuclei, 
we conclude that:  

(i) Recent improvement in experimental 
technique led to the identification of the ISGMR in 
light and medium nuclei and the observation of the 
ISGDR in nuclei. Currently the centroid energy 0E  
of the ISGMR can be deduced experimentaly with 
very small uncertainty of about 0.2 MeV, which 
corresponds to an uncertainty of about 7 MeV in the 
extracted value of K .  

(ii) The maximum cross section for the ISGDR 
decreases very strongly at high excitation energy and 
may drops below the current experimental 
sensitivity for excitation energies above 30 and 26 
MeV for 116 Sn and 208 Pb, respectively. This leads to 
a missing experimental strength for the ISGDR at 
high energy and explained the discrepancy between 
theory and early experimental data concerning the 
centroid energy 1E  of the ISGDR. This prediction 
was confirmed in recent experiments [10, 11]. 
However, more accurate experimental data on the 
ISGDR is very much needed.  

(iii) Common violations of self-consistency in 
HF based RPA calculations of the strength 
functions of giant resonances may result in shifts in 
the calculated values of the centroid energies which 
are significantly larger in magnitude than the 
current experimental uncertainties. Thus, it is 
important to carry out fully self-consistent HF-RPA 
calculations in order to extract an accurate value of 
K  from experimental data on the ISGMR and 
ISGDR.  

(iv) It is possible to build bona fide Skyrme 
forces so that the incompressibility is close to the 
relativistic value.  

(v) Fully self-consistent calculations of the 
ISGMR using Skyrme forces lead to the conclusion 
that 240 20K = ±  MeV. The uncertainty of about 20 
MeV in the value of K  is mainly due to the 
uncertainty in the value of the nuclear matter 
symmetry energy J  and its slope.  
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Table 3∗. Fully self-consistent HF-RPA results [48] 
for the ISGMR centroid energy (in MeV) 
obtained using the interactions SK255 [60], SGII 
[52] and KDE0 [55] and compared with the 
RRPA results obtained [31] with the NL3 
interaction [57] 

 

Nucleus 1 2ω ω−  Experiment NL3 SK255 SGII KDE0
90 Zr  0 - 60  18.7 18.90 17.89 18.03

 10 - 35 17.81± 0.30  18.85 17.87 17.98
116 Sn  0 - 60  17.1 17.31 16.36 16.58

 10 - 35 15.85± 0.20  17.33 16.38 16.61
144 Sm  0 - 60  16.1 16.21 15.26 15.46

 10 - 35 15.40± 0.40  16.19 15.22 15.44
208 Pb  0 - 60  14.2 14.34 13.57 13.79

 10 - 35 13.96± 0.20  14.38 13.58 13.84
K  

(MeV)   272 255 215 229 

J  (MeV)   37.4 37.4 26.8 33.0
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РІВНЯННЯ  СТАНУ  СИМЕТРИЧНОЇ  ТА  АСИМЕТРИЧНОЇ  ЯДЕРНОЇ  МАТЕРІЇ 

 
Ш. Шломо 

 
Рівняння стану (РС) ядерної матерії є дуже важливою складовою у вивченні властивостей ядер, зіткнень 

важких іонів, нейтронних зірок та наднових. Акуратна оцінка величини модуля стискання симетричної ядерної 
матерії K , що напряму пов’язана з кривизною РС, необхідна для розширення наших уявлень про РС поблизу 
точки насичення. Розглядається сучасний стан задачі визначення K  з експериментальних даних по гігантських 
монопольних та дипольних резонансах (моди стиснення) в ядрах у рамках наближення випадкових фаз, 
побудованого на основі мікроскопічної теорії середнього поля. 

 
УРАВНЕНИЕ  СОСТОЯНИЯ  СИММЕТРИЧНОЙ  И  АСИММЕТРИЧНОЙ  ЯДЕРНОЙ  МАТЕРИИ 

 
Ш. Шломо 

 
Уравнение состояния (УС) ядерной материи является очень важным ингредиентом в изучении свойств ядер, 

столкновений тяжелых ионов, нейтронных звезд и сверхновых. Аккуратная оценка величины модуля сжатия 
симметричной ядерной материи K , которая напрямую связана с кривизной УС, необходима для расширения 
наших представлений об УС вблизи точки насыщения. Рассматривается современное состояние задачи 
определения K  из экспериментальных данных по гигантским монопольным и дипольным резонансам (моды 
сжатия) в ядрах в рамках приближения случайных фаз, построенного на базе микроскопической теории 
среднего поля. 
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