ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
First model independent results from DAMA/LIBRA-phase2
R. Bernabei1,2,*, P. Belli1,2, A. Bussolotti2, F. Cappella3,4, V. Caracciolo5, R. Cerulli1,2, C. J. Dai6, A. d’Angelo3,4, A. Di Marco2, H. L. He6, A. Incicchitti3,4, X. H. Ma6, A. Mattei4, V. Merlo1,2, F. Montecchia2,7, X. D. Sheng6, Z. P. Ye6,8
1 Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy
2 INFN, sez. Roma "Tor Vergata", Rome, Italy
3 Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy
4 INFN, Sezione di Roma, Rome, Italy
5 INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy
6 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, P.R. China
7 Dipartimento Ingegneria Civile e Ingegneria Informatica, Università di Roma "Tor Vergata", Rome, Italy
8 University of Jinggangshan, Ji'an, Jiangxi, P.R. China
*Corresponding author. E-mail address:
rita.bernabei@roma2.infn.it
Abstract: The first model independent results obtained by the DAMA/LIBRA-phase2 experiment are presented. The data have been collected over 6 annual cycles corresponding to a total exposure of 1.13 t×yr, deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. The DAMA/LIBRA-phase2 apparatus, ≃250 kg highly radio-pure NaI(Tl), profits from a second generation high quantum efficiency photomultipliers and of new electronics with respect to DAMA/LIBRA-phase1. The improved experimental configuration has also allowed to lower the software energy threshold. New data analysis strategies are presented. The DAMA/LIBRA-phase2 data confirm the evidence of a signal that meets all the requirements of the model independent Dark Matter (DM) annual modulation signature, at 9.5σ C.L. in the energy region (1 - 6) keV. In the energy region between 2 and 6 keV, where data are also available from DAMA/NaI and DAMA/LIBRA-phase1 (exposure 1.33 t×yr, collected over 14 annual cycles), the achieved C.L. for the full exposure (2.46 t×yr) is 12.9σ; the modulation amplitude of the single-hit scintillation events is: (0.0103 ± 0.0008) cpd/kg/keV, the measured phase is (145 ± 5) d and the measured period is (0.999 ± 0.001) yr, all these values are well in agreement with those expected for DM particles. No systematics or side reaction able to mimic the exploited DM signature (i.e. to account for the whole measured modulation amplitude and to simultaneously satisfy all the requirements of the signature), has been found or suggested by anyone throughout some decades thus far.
Keywords: scintillation detectors, elementary particle processes, Dark Matter.
References:1. R. Bernabei et al. The DAMA/LIBRA apparatus. Nucl. Instr. Meth. A 592 (2008) 297. https://doi.org/10.1016/j.nima.2008.04.082
2. R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56 (2008) 333. https://doi.org/10.1140/epjc/s10052-008-0662-y
3. R. Bernabei et al. New results from DAMA/LIBRA. Eur. Phys. J. C 67 (2010) 39. https://doi.org/10.1140/epjc/s10052-010-1303-9
4. R. Bernabei et al. Final model independent result of DAMA/LIBRA-phase1. Eur. Phys. J. C 73 (2013) 2648. https://doi.org/10.1140/epjc/s10052-013-2648-7
5. R. Bernabei et al. Dark matter investigation by DAMA at Gran Sasso. Int. J. Mod. Phys. A 28 (2013) 1330022. https://doi.org/10.1142/S0217751X13300226
6. R. Bernabei et al. Performances of the new high quantum efficiency PMTs in DAMA/LIBRA. J. Instrum. 7 (2012) P03009. https://doi.org/10.1088/1748-0221/7/03/P03009
7. R. Bernabei et al. No role for muons in the DAMA annual modulation results. Eur. Phys. J. C 72 (2012) 2064. https://doi.org/10.1140/epjc/s10052-012-2064-4
8. R. Bernabei et al. No role for neutrons, muons and solar neutrinos in the DAMA annual modulation results. Eur. Phys. J. C 74 (2014) 3196. https://doi.org/10.1140/epjc/s10052-014-3196-5
9. DAMA coll. issue dedicated to DAMA. Int. J. Mod. Phys. A 31 (2016) and Refs. therein. https://doi.org/10.1142/S0217751X1642001X
10. R. Bernabei et al. Model independent result on possible diurnal effect in DAMA/LIBRA-phase1. Eur. Phys. J. C 74 (2014) 2827. https://doi.org/10.1140/epjc/s10052-014-2827-1
11. R. Bernabei et al. New search for processes violating the Pauli exclusion principle in sodium and in iodine. Eur. Phys. J. C 62 (2009) 327. https://doi.org/10.1140/epjc/s10052-009-1068-1
12. R. Bernabei et al. Search for charge non-conserving processes in 127I by coincidence technique. Eur. Phys. J. C 72 (2012) 1920. https://doi.org/10.1140/epjc/s10052-012-1920-6
13. R. Bernabei et al. New search for correlated e+e- pairs in the α decay of 241Am. Eur. Phys. J. A 49 (2013) 64. https://doi.org/10.1140/epja/i2013-13064-1
14. R. Bernabei et al. Investigating Earth shadowing effect with DAMA/LIBRA-phase1. Eur. Phys. J. C 75 (2015) 239. https://doi.org/10.1140/epjc/s10052-015-3473-y
15. P. Belli et al. Observations of annual modulation in direct detection of relic particles and light neutralinos. Phys. Rev. D 84 (2011) 055014. https://doi.org/10.1103/PhysRevD.84.055014
16. A. Addazi et al. DAMA annual modulation effect and asymmetric mirror matter. Eur. Phys. J. C 75 (2015) 400. https://doi.org/10.1140/epjc/s10052-015-3634-z
17. R. Bernabei et al. On corollary model-dependent analyses and comparisons. Int. J. Mod. Phys. A 31 (2016) 1642009. https://doi.org/10.1142/S0217751X16420094
18. R. Cerulli et al. DAMA annual modulation and mirror dark matter. Eur. Phys. J. C 77 (2017) 83. https://doi.org/10.1140/epjc/s10052-017-4658-3
19. R. Bernabei et al. First model independent results from DAMA/LIBRA-phase2. Universe 4 (2018) 116. https://doi.org/10.3390/universe4110116
20. R. Bernabei et al. New model independent results from the first six full annual cycles of DAMA/LIBRA-phase2. Bled Workshops in Physics 19(2) (2018) 27. http://bsm.fmf.uni-lj.si/bled2018bsm/talks/BledVol19No2proc.pdf
21. P. Belli et al. DAMA proposal to INFN Scientific Committee II, April 24th 1990.
22. R. Bernabei et al. New limits on WIMP search with large-mass low-radioactivity NaI(Tl) set-up at Gran Sasso. Phys. Lett. B 389 (1996) 757. https://doi.org/10.1016/S0370-2693(96)80020-7
23. R. Bernabei et al. Searching for WIMPs by the annual modulation signature. Phys. Lett. B 424 (1998) 195. https://doi.org/10.1016/S0370-2693(98)00172-5
24. R. Bernabei et al. On a further search for a yearly modulation of the rate in particle Dark Matter direct search. Phys. Lett. B 450 (1999) 448. https://doi.org/10.1016/S0370-2693(99)00091-X
25. P. Belli et al. Extending the DAMA annual-modulation region by inclusion of the uncertainties in astrophysical velocities. Phys. Rev. D 61 (2000) 023512. https://doi.org/10.1103/PhysRevD.61.023512
26. R. Bernabei et al. Search for WIMP annual modulation signature: results from DAMA/NaI-3 and DAMA/NaI-4 and the global combined analysis. Phys. Lett. B 480 (2000) 23. https://doi.org/10.1016/S0370-2693(00)00405-6
27. R. Bernabei et al. Investigating the DAMA annual modulation data in a mixed coupling framework. Phys. Lett. B 509 (2001) 197. https://doi.org/10.1016/S0370-2693(01)00493-2
28. R. Bernabei et al. Investigating the DAMA annual modulation data in the framework of inelastic dark matter. Eur. Phys. J. C 23 (2002) 61. https://doi.org/10.1007/s100520100854
29. P. Belli et al. Effect of the galactic halo modeling on the DAMA-NaI annual modulation result: An extended analysis of the data for weakly interacting massive particles with a purely spin-independent coupling. Phys. Rev. D 66 (2002) 043503. https://doi.org/10.1103/PhysRevD.66.043503
30. R. Bernabei et al. Performances of the ≃100 kg NaI(Tl) set-up of the DAMA experiment at Gran Sasso. Il Nuovo Cim. A 112 (1999) 545. https://doi.org/10.1007/BF03035868
31. R. Bernabei et al. On the investigation of possible systematics in WIMP annual modulation search. Eur. Phys. J. C 18 (2000) 283. https://doi.org/10.1007/s100520000540
32. R. Bernabei el al. Dark matter search. La Rivista del Nuovo Cimento 26(1) (2003) 1 and Refs. therein. https://www.sif.it/riviste/sif/ncr/econtents/2003/026/01
33. R. Bernabei et al. Dark matter particles in the galactic halo: Results and implications from DAMA/NaI. Int. J. Mod. Phys. D 13 (2004) 2127 and Refs. therein. https://doi.org/10.1142/S0218271804006619
34. R. Bernabei et al. Investigating pseudoscalar and scalar dark matter. Int. J. Mod. Phys. A 21 (2006) 1445. https://doi.org/10.1142/S0217751X06030874
35. R. Bernabei et al. Investigating halo substructures with annual modulation signature. Eur. Phys. J. C 47 (2006) 263. https://doi.org/10.1140/epjc/s2006-02559-9
36. R. Bernabei et al. On electromagnetic contributions in WIMP quests. Int. J. Mod. Phys. A 22 (2007) 3155. https://doi.org/10.1142/S0217751X07037093
37. R. Bernabei et al. Possible implications of the channeling effect in NaI(Tl) crystals. Eur. Phys. J. C 53 (2008) 205. https://doi.org/10.1140/epjc/s10052-007-0479-0
38. R. Bernabei et al. Investigating electron interacting dark matter. Phys. Rev. D 77 (2008) 023506. https://doi.org/10.1103/PhysRevD.77.023506
39. R. Bernabei et al. Investigation on light dark matter. Mod. Phys. Lett. A 23 (2008) 2125. https://doi.org/10.1142/S0217732308027473
40. R. Bernabei et al. Search for non-paulian transitions in 23Na and 127I. Phys. Lett. B 408 (1997) 439. https://doi.org/10.1016/S0370-2693(97)00842-3
41. P. Belli et al. New experimental limit on the electron stability and non-paulian transitions in Iodine atoms. Phys. Lett. B 460 (1999) 236. https://doi.org/10.1016/S0370-2693(99)00783-2
42. R. Bernabei et al. Extended limits on neutral strongly interacting massive particles and nuclearites from NaI(Tl) scintillators. Phys. Rev. Lett. 83 (1999) 4918. https://doi.org/10.1103/PhysRevLett.83.4918
43. P. Belli et al. New limits on the nuclear levels excitation of 127I and 23Na during charge nonconservation. Phys. Rev. C 60 (1999) 065501. https://doi.org/10.1103/PhysRevC.60.065501
44. R. Bernabei et al. Investigation on possible diurnal effects induced by dark matter particles. Il Nuovo Cimento A 112 (1999) 1541. https://scholar.google.com/scholar_lookup?author=R.+Bernabei&journal=Il+Nuovo+Cimento+A&volume=112&pages=1541&publication_year=1999
45. R. Bernabei et al. Search for solar axions by Primakoff effect in NaI crystals. Phys. Lett. B 515 (2001) 6. https://doi.org/10.1016/S0370-2693(01)00840-1
46. F. Cappella et al. A preliminary search for Q-balls by delayed coincidences in NaI(Tl). Eur. Phys. J.-direct C 14 (2002) 1. https://doi.org/10.1007/s1010502c0014
47. R. Bernabei et al. Search for spontaneous transition of nuclei to a superdense state. Eur. Phys. J. A 23 (2005) 7. https://doi.org/10.1140/epja/i2004-10072-2
48. R. Bernabei et al. A search for spontaneous emission of heavy clusters in the 127I nuclide. Eur. Phys. J. A 24 (2005) 51. https://doi.org/10.1140/epja/i2004-10122-9
49. A.K. Drukier et al. Detecting cold dark-matter candidates. Phys. Rev. D 33 (1986) 3495. https://doi.org/10.1103/PhysRevD.33.3495
50. K. Freese et al. Signal modulation in cold-dark-matter detection. Phys. Rev. D 37 (1988) 3388. https://doi.org/10.1103/PhysRevD.37.3388
51. R. Bernabei, A. Incicchitti. Low background techniques in NaI(Tl) setups. Int. J. Mod. Phys. A 32 (2017) 1743007. https://doi.org/10.1142/S0217751X17430072
52. D. Smith, N. Weiner. Inelastic dark matter. Phys. Rev. D 64 (2001) 043502. https://doi.org/10.1103/PhysRevD.64.043502
53. D. Tucker-Smith, N. Weiner. Status of inelastic dark matter. Phys. Rev. D 72 (2005) 063509. https://doi.org/10.1103/PhysRevD.72.063509
54. D.P. Finkbeiner et al. Inelastic dark matter and DAMA/LIBRA: An experimentum crucis. Phys. Rev. D 80 (2009) 115008. https://doi.org/10.1103/PhysRevD.80.115008
55. K. Freese et al. Detectability of weakly interacting massive particles in the Sagittarius dwarf tidal stream. Phys. Rev. D 71 (2005) 043516. https://doi.org/10.1103/PhysRevD.71.043516
56. K. Freese et al. Effects of the Sagittarius dwarf tidal stream on dark matter detectors. Phys. Rev. Lett. 92 (2004) 111301. https://doi.org/10.1103/PhysRevLett.92.111301
57. P. Belli et al. The electronics and DAQ system in DAMA/LIBRA. Int. J. Mod. Phys. A 31 (2016) 1642005. https://doi.org/10.1142/S0217751X16420057
58. P. Gondolo et al. DarkSUSY 4.00 neutralino dark matter made easy. New Astron. Rev. 49 (2005) 193. https://doi.org/10.1016/j.newar.2005.01.009
59. G. Gelmini, P. Gondolo. Weakly interacting massive particle annual modulation with opposite phase in late-infall halo models. Phys. Rev. D 64 (2001) 023504. https://doi.org/10.1103/PhysRevD.64.023504
60. F.S. Ling, P. Sikivie, S. Wick. Diurnal and annual modulation of cold dark matter signals. Phys. Rev. D 70 (2004) 123503. https://doi.org/10.1103/PhysRevD.70.123503
61. G. Ranucci, M. Rovere. Periodogram and likelihood periodicity search in the SNO solar neutrino data. Phys. Rev. D 75 (2007) 013010. https://doi.org/10.1103/PhysRevD.75.013010
62. J.D. Scargle. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263 (1982) 835. https://doi.org/10.1086/160554
63. W.H. Press et al. Numerical Recipes in Fortran 77: The Art of Scientific Computing (Cambridge, England: Cambridge University Press, 1992) section 13.8. http://www.cambridge.org/9780521430647
64. J.H. Horne, S.L. Baliunas. A prescription for period analysis of unevenly sampled time series. Astrophys. J. 302 (1986) 757. https://doi.org/10.1086/164037
65. R. Bernabei et al. Dark matter particles in the galactic halo. Bled Workshop in Physics 15(2) (2014) 10. https://arxiv.org/abs/1412.6524
66. W.T. Eadie et al. Statistical Methods in Experimental Physics (American Elsevier Pub., 1971). Google books