![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Nuclear g-factors and structure of the high-spin 10+, 12+ and 7- states in isotopes 196,198Hg
Yu. V. Nosenko, A. I. Levon, I. B. Kovgar, V. A. Onischuk, A. A. Schevchuk
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: The integral perturbed angular distribution (IPAD) method in an external magnetic field has been used to measure the g-factors of isomers in the 196,198Hg nuclei, populated in the (α, 2n)-reaction. The results are as follows: 196Hg, g(12+ and 10+) = -0.19(6), g(7-) = -0.030(17); 198Hg, g(12+ and 10+) = -0.18(8), g(7-) = -0.033(14). The intrinsic structure of the isomers is discussed. Measured g-factors of 12+ and 10+ states support model of "axial-symmetric oblate rotor + two-quasiparticles". Measured g-factors of 7- states in mercury allows to confirm prediction of model of "axial-symmetric rotor plus two-quasiparticles" for Hg nuclei and transient form in the platinum nuclei.
References:1. Levon A. I. et al. Nucl. Phys. A 764 (2006) 24. https://doi.org/10.1016/j.nuclphysa.2005.09.016
2. Yadav H. L., Faessler A., Toki H., Castel B. Phys. Lett. B 89 (1980) 307. https://doi.org/10.1016/0370-2693(80)90130-6
3. Toki H., Neergård K., Vogel P., Faessler A. Nucl. Phys. A 279 (1977) 1. https://doi.org/10.1016/0375-9474(77)90417-1
4. Yadav L., Toki H., Faessler A. Phys. Rev. Lett. 39 (1977) 1128. https://doi.org/10.1103/PhysRevLett.39.1128
5. Neergård K., Vogel P., Radomski M. Nucl. Phys. A 238 (1975) 199. https://doi.org/10.1016/0375-9474(75)90349-8
6. Stephens F. S., Simon R. S. Nucl. Phys. A 183 (1972) 257. https://doi.org/10.1016/0375-9474(72)90658-6
7. Singh B. Nucl. Data Sheets 99 (2003) 275. https://doi.org/10.1006/ndsh.2003.0009
8. Baglin C. M. Nucl. Data Sheets 84 (1998) 717. https://doi.org/10.1006/ndsh.1998.0017
9. Browne E., Singh B. Nucl. Data Sheets 79 (1996) 277. https://doi.org/10.1006/ndsh.1996.0013
10. Chunmei C., Gonging W., Zhenlan T. Nucl. Data Sheets 83 (1998) 145. https://doi.org/10.1006/ndsh.1998.0002
11. Chunmei C. Nucl. Data Sheets 95 (2002) 59. https://doi.org/10.1006/ndsh.2002.0003
12. Kroth R., Hardt K., Guttormsen M. et al. Phys. Lett. B 99 (1981) 209. https://doi.org/10.1016/0370-2693(81)91109-6
13. Hjorth S. A., Lee I. Y., Beene J. R. et al. Phys. Rev. Lett. 45 (1980) 878. https://doi.org/10.1103/PhysRevLett.45.878
14. Kroth R., Bhattacherjee S. K., Günther Ch. et al. Phys. Lett. B 97 (1980) 197. https://doi.org/10.1016/0370-2693(80)90581-X
15. Горбачев Б. И., Левон A. И., Немец O. Ф. и др. Яд. физ. 39 (1984) 518.
16. Frauendorf S. Phys. Lett. B 100 (1981) 219. https://doi.org/10.1016/0370-2693(81)90320-8
17. Sergolle H., Aguer P., Bastin G. et al. Z. Phys. A 313 (1983) 289. https://doi.org/10.1007/BF01439480