Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2007, volume 8, issue 1, pages 67-71.
Section: Nuclear Physics.
Received: 04.07.2006; Published online: 30.03.2007.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2007.01.067

Nuclear g-factors and structure of the high-spin 10+, 12+ and 7- states in isotopes 196,198Hg

Yu. V. Nosenko, A. I. Levon, I. B. Kovgar, V. A. Onischuk, A. A. Schevchuk

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: The integral perturbed angular distribution (IPAD) method in an external magnetic field has been used to measure the g-factors of isomers in the 196,198Hg nuclei, populated in the (α, 2n)-reaction. The results are as follows: 196Hg, g(12+ and 10+) = -0.19(6), g(7-) = -0.030(17); 198Hg, g(12+ and 10+) = -0.18(8), g(7-) = -0.033(14). The intrinsic structure of the isomers is discussed. Measured g-factors of 12+ and 10+ states support model of "axial-symmetric oblate rotor + two-quasiparticles". Measured g-factors of 7- states in mercury allows to confirm prediction of model of "axial-symmetric rotor plus two-quasiparticles" for Hg nuclei and transient form in the platinum nuclei.

References:

1. Levon A. I. et al. Nucl. Phys. A 764 (2006) 24. https://doi.org/10.1016/j.nuclphysa.2005.09.016

2. Yadav H. L., Faessler A., Toki H., Castel B. Phys. Lett. B 89 (1980) 307. https://doi.org/10.1016/0370-2693(80)90130-6

3. Toki H., Neergård K., Vogel P., Faessler A. Nucl. Phys. A 279 (1977) 1. https://doi.org/10.1016/0375-9474(77)90417-1

4. Yadav L., Toki H., Faessler A. Phys. Rev. Lett. 39 (1977) 1128. https://doi.org/10.1103/PhysRevLett.39.1128

5. Neergård K., Vogel P., Radomski M. Nucl. Phys. A 238 (1975) 199. https://doi.org/10.1016/0375-9474(75)90349-8

6. Stephens F. S., Simon R. S. Nucl. Phys. A 183 (1972) 257. https://doi.org/10.1016/0375-9474(72)90658-6

7. Singh B. Nucl. Data Sheets 99 (2003) 275. https://doi.org/10.1006/ndsh.2003.0009

8. Baglin C. M. Nucl. Data Sheets 84 (1998) 717. https://doi.org/10.1006/ndsh.1998.0017

9. Browne E., Singh B. Nucl. Data Sheets 79 (1996) 277. https://doi.org/10.1006/ndsh.1996.0013

10. Chunmei C., Gonging W., Zhenlan T. Nucl. Data Sheets 83 (1998) 145. https://doi.org/10.1006/ndsh.1998.0002

11. Chunmei C. Nucl. Data Sheets 95 (2002) 59. https://doi.org/10.1006/ndsh.2002.0003

12. Kroth R., Hardt K., Guttormsen M. et al. Phys. Lett. B 99 (1981) 209. https://doi.org/10.1016/0370-2693(81)91109-6

13. Hjorth S. A., Lee I. Y., Beene J. R. et al. Phys. Rev. Lett. 45 (1980) 878. https://doi.org/10.1103/PhysRevLett.45.878

14. Kroth R., Bhattacherjee S. K., Günther Ch. et al. Phys. Lett. B 97 (1980) 197. https://doi.org/10.1016/0370-2693(80)90581-X

15. Горбачев Б. И., Левон A. И., Немец O. Ф. и др. Яд. физ. 39 (1984) 518.

16. Frauendorf S. Phys. Lett. B 100 (1981) 219. https://doi.org/10.1016/0370-2693(81)90320-8

17. Sergolle H., Aguer P., Bastin G. et al. Z. Phys. A 313 (1983) 289. https://doi.org/10.1007/BF01439480