УДК 539.1

ЯДЕРНЫЕ *g*-ФАКТОРЫ И СТРУКТУРА ВЫСОКОСПИНОВЫХ 10⁺, 12⁺ И 7⁻ СОСТОЯНИЙ В ИЗОТОПАХ ^{196,198}Hg

Ю. В. Носенко, А. И. Левон, И. Б. Ковгар, В. А. Онищук, А. А. Шевчук

Институт ядерных исследований НАН Украины, Киев

Методом интегрального возмущенного углового распределения (ИВУР) во внешнем магнитном поле были измерены *g*-факторы изомерных состояний в ядрах ^{196,198}Hg, заселяемых и выстраиваемых в (α , 2n)-реакции. Получены следующие результаты: ¹⁹⁶Hg, g(12⁺ and 10⁺) = -0.19(6), g(7⁻) = -0.030(17); ¹⁹⁸Hg, g(12⁺ и 10⁺) = -0.18(8), g(7⁻) = -0.033(14). Высокая чувствительность ядерных *g*-факторов к внутренней структуре состояния и форме ядра позволяет проверить предсказания модели "аксиально-симметричный сплющенный ротатор + две квазичастицы" для ядер ртути. Обсуждается внутренняя структура изомеров.

1. Вступление

В статье [1] приведены результаты измерений g-факторов состояний 7⁻ в ядрах ^{190,192,194}Pt, для которых их большие положительные величины согласуются с теоретическими предсказаниями модели "неаксиальный ротатор + две квазичастицы" [2, 3], что свидетельствует о том, что данные ядра имеют γ -нестабильную (переходную) форму. При этом оказывается, что вблизи поверхности Ферми преобладают протонные состояния. Адекватное описание энергий этих ядер возможно, таким образом, только при выборе триаксиальной формы ядра в модели "неаксиальный ротатор + две квазичастицы" [2 - 4].

В то же время энергии полос отрицательной четности ядер ртути описываются в рамках модели "аксиально-симметричный сплющенный ротатор + 2 квазичастицы" [5]. В этом случае возле поверхности Ферми оказываются нейтронные состояния. Эффективной проверкой этих положений могло бы стать измерение g-факторов состояний 7⁻ в ядрах ^{196,198}Hg, что и явилось мотивацией проведенных измерений. Также измерялись g-факторы высокоспиновых состояний 12^+ и 10^+ (для ядра ¹⁹⁸Hg измерение g-факторов этих состояний выполнены впервые) для проверки структуры двухквазичастичных возбуждений в случае вращательного выстраивания [6].

2. Эксперимент

Возбужденные состояния в ядрах 196,198 Hg заселялись и выстраивались в реакциях 194,196 Pt(α , 2n) 196,198 Hg с использованием пучка α -частиц энергией 27 МэВ циклотрона У-120 ИЯИ НАН Украины. Использовались самоподдерживающиеся металлические мишени толщиной ~ 40 мг/см² и обогащением изотопом 98 % для 194 Pt и 196 Pt. После прохождения через мишень пучок останавливался в висмутовой пластинке на расстоянии 5 см позади мишени, при этом не происходило существенного увеличения фона в измеренных спектрах. *g*-факторы измерялись методом интегрального возмущенного углового распределения во внешнем магнитном поле величиной 2.90(1) Т, создаваемом электромагнитом. Металлическая платина имеет кубическую решетку, таким образом взаимодействие в мишени не приводило к появлению ослабления распределения γ-лучей. Методика эксперимента подробно описана в статье [1].

Части схемы энергетических уровней изотопов ^{196,198}Hg, важные в анализе экспериментальных данных, представлены на рис. 1. Здесь же указаны использованные усредненные величины времен жизни уровней, взятые из [7 - 11]. Типичный γ-спектр из реакции ¹⁹⁴Pt(α , 2n)¹⁹⁶Hg показан на рис. 2. Экспериментальные результаты приведены в таблице.

2.1. ¹⁹⁶Hg

g-фактор в ¹⁹⁶Hg, приписываемый состоянию 10⁺ с временем жизни $\tau = 10.1(14)$ нс, был измерен методом ИВУР с использованием (α , 4n) реакции [13] и найден равным *g* = -0.18(9). Однако в дальнейшем, при более тщательном исследовании схемы уровней в ¹⁹⁶Hg, был обнаружен уровень 12⁺ с временем жизни $\tau = 5.0(4)$ нс [12], а время жизни состояния 10⁺ было измерено вновь и найдено равным 7.4(6) нс (см. рис. 1). Тем не менее для измеренного в [13] *g*-фактора требуется небольшая поправка, чтобы учесть новые значения времен жизни.

В тех случаях, когда наблюдаемый переход заселяется другим изомерным переходом, а также для малых углов ларморовской прецессии $\Delta \theta = \omega \tau + \theta_B$ может быть использовано следующее выражение для нормализованной разности спектров [1]:

$$R = S \cdot \left\{ \frac{I_1}{I_2} \cos 2\alpha_{12} \frac{\omega_1 \tau_1^2 - \omega_2 \tau_2^2}{\tau_1 - \tau_2} + \frac{I_2 - I_1}{I_2} \omega_2 \tau_2 + \theta_B \left[1 + \frac{I_1}{I_2} (\cos 2\alpha_{12} - 1) \right] \right\}.$$
 (1)

Здесь S – логарифмическая производная углового распределения; I₁, I₂ – интенсивности переходов; ω_1 , ω_2 – частоты ларморовской прецессии спина, т₁, т₂ – времена жизни изомерных переходов; $\theta_{\rm B}$ – угол поворота пучка в магнитном поле, α₁₂ – фазовый сдвиг, обусловленный разницей между g-факторами и временами жизни двух изомеров. Индексы (1) и (2) относятся к верхнему и нижнему изомерным переходам. Если оба состояния имеют одинаковую $(v_{i_{13/2}}^{-2})I^{\pi}$ структуру, тогда, согласно соотношению аддитивности, они имеют одинаковые g-факторы. В этом случае справедливо следующее выражение, полученное из выражения (1) с введением эффективного времени жизни для двух изомеров в каскаде:

$$R = S \cdot \left[\omega \left(\frac{I_1}{I_2} \tau_1 + \tau_2 \right) + \theta_B \right] = S \cdot \left(\omega \tau_{ef} + \theta_B \right), \quad (2)$$

где величины с индексом (1) относятся к состоянию 12⁺, а величины с индексом (2) – к состоянию 10⁺. Если принять для отношения интенсивностей переходов $12^+ \rightarrow 10^+$ и $10^+ \rightarrow 8^+$ усредненное отношение соответствующих переходов в ¹⁹⁰ Рt и ¹⁹² Рt из (α , 4n) реакции [13] I₁/I₂ = 0.65(8), тогда $\tau_{ef} = 10.6(8)$ нс и исправленное значение g-фактора из этой статьи равно g = -0.17(9)

вместо -0.18(9). Линия 79.5 кэВ, соответствующая переходу $10^+ \rightarrow 8^+$, перекрывается рентгеновскими линиями 77.9 кэВ и 80.2 кэВ, однако ее интенсивность может быть определена после вычитания нормализованного рентгеновского спектра для реакции 196 Pt(α , 2n) 198 Hg. Точность вычисленной таким способом интенсивности достаточна для того, чтобы определить отношение $I_1/I_2 = 0.42(5)$ из реакции (α , 2n) и вычислить $\tau_{\rm ef} = 9.5(8)$ нс. Но для определения углов прецессии эти интенсивности имеют слишком большие неопределенности. Поэтому данные для перехода 96.7 кэВ, который прямо разряжает изомерное состояние 12⁺, были проанализированы с помощью выражения [1]

$$R = S \cdot \Delta \theta_L \tag{3}$$

для времени жизни состояния 12⁺, равного $\tau = 5.0(4)$ нс. Данные для нижележащих переходов в основной полосе, таких как 477.6 и 723.7 кэВ, были проанализированы с τ_{ef} = = 9.5(8) нс. Усредненное для 12^+ и 10^+ состояний значение *g*-фактора получено равным g = -0.19(6), что находится в отличном согласии с данными, приведенными в [14].

Рис. 1. Части схемы уровней ядер ^{196,198}Нg, важные для измерения *g*-факторов. (Энергии уровней указаны в кэВ, времена жизни - в нс.)

$$R = S \cdot \left\{ \theta_B + \sum_i \frac{I_d^{(i)}}{I_{fd}} \Delta \theta_L^{(i)} \right\}$$
(4)

Усредненное $\omega \tau_{ef}$ для состояний 10^+ и 12^+ использовалось в анализе данных для определения g-фактора изомера 7⁻, при этом использовалось выражение [1]

196Hg

и уравнение (1). Вычисленная в настоящем исследовании величина $g(7^{-}) = -0.030(17)$ согласуется с полученным ранее методом ДВУР [15] значением $g(7^{-}) = -0.040(19)$.

2.2. ¹⁹⁸Hg

Ситуация, подобная имеющей место для изомерных состояний 10⁺ и 12⁺ в ¹⁹⁶Нg, наблюдается также и в ¹⁹⁸Hg. В анализе способа разрядки этих изомеров для всех переходов использовалось эффективное время жизни, $\tau_{ef} = 3.15(25)$ нс. Усредненный *g*-фактор состояний 12⁺ и 10⁺ был измерен впервые и равен $g(10^+ \text{ и } 12^+) = -0.18(8)$. К сожалению, линия 143.2 кэВ, которой непосредственно разряжается 12⁺ изомер, перекрывается линией фона и поэтому не может быть использована для определения g-фактора состояния 12⁺. Для определения g-фактора состояния 7⁻ использовалось усредненное значение $\omega \tau_{ef}$ для состояний 10⁺ и 12⁺. Полученная таким образом величина $g(7^{-}) = -0.033(14)$ согласуется с значением $g(7^{-}) = -0.030(15)$, измеренным методом ДВУР

[15].

Рис. 2. Гамма-спектр облучения ядер ¹⁹⁴Рt α-частицами с энергией 26.8 МэВ.

		F - F -	,		- F				
Е _γ , кэВ	$I_i - I_f$	Inepex	S	R	$\omega_{\scriptscriptstyle L} au$, рад	$\overline{\omega_L au}$, рад	<i>g</i> -фактор		
¹⁹⁶ Hg									
96.7	$12^+ - 10^+$	2.7(3)	0.56(15)	-0.022(30)	0.56(15)	-0.155(65)			
79.5	10 ⁺ - 8 ⁺	6.5(6)	· · ·						
477.6	8 ⁺ - 6 ⁺	10.8(3)	0.34(3)	-0.008(4)	0.34(3)	-0.232(82)			
723.7	6 ⁺ - 4 ⁺	17.0(3)	0.35(2)	0.012(5)	0.35(2)	-0.210(125)			
						-0.207(45)	$g(10^+, 12^+)=-0.19(6)$		
278.4	10 ⁺ - 9 ⁻	0.3(1)							
84.3	7 5-	23.5(25)	0.75(15)	0.069(15)	0.75(15)	-0.024(27)			
695.6	5-4	37.2(6)	-0.35(3)	-0.034(3)	-0.35(3)	-0.030(24)			
635.5	4 ⁺ - 2 ⁺	80.1(9)	0.28(1)	0.026(2)	0.28(1)	-0.027(36)			
426.0	$2^+ - 0^+$	100	0.25(1)	0.022(2)	0.25(1)	-0.067(70)			
						-0.023(15)	$g(7^{-}) = -0.030(17)$		
¹⁹⁸ Hg									
143.2	$12^+ - 10^+$	0.7(1)							
97.3	10 ⁺ - 8 ⁺	2.9(5)	0.029(25)	0.029(25)	0.58(15)	-0.067(42)			
524.1	10 ⁺ - 9 ⁻	2.0(2)	-0.017(14)	-0.017(14)	-0.35(6)	-0.066(45)			
521.6	8 ⁺ - 6 ⁺	6.5(3)	0.021(4)	0.021(4)	0.34(3)	-0.122(72)			
767.3	6 ⁺ - 4 ⁺	10.8(3)	0.032(6)	0.035(3)	-0.092(98)				
						-0.075(30)	$g(10^+, 12^+)=-0.18(8)$		
47.7	7 ⁻ - 5 ⁻	26.0(30)							
587.2	5 ⁻ - 4 ⁺	44.9(6)	-0.031(3)	-0.031(3)	-0.33(2)	-0.038(19)			
636.4	4 ⁺ - 2 ⁺	77.8(9)	0.024(2)	0.26(1)	-0.065(50)				
411.8	$2^+ - 0^+$	100	0.022(2)	0.23(1)	-0.070(69)				
						-0.042(18)	$\sigma(7^{-}) = -0.033(14)$		

Розин тать и изморания произдании и анализа ная изоморни и доотояний в изот	OHOV 196,198 HG
гезультаты измерения прецессии и анализа для изомерных состоянии в изот	onax ng

3. Обсуждение

3.1. 12⁺ и 10⁺ состояния в ядрах ^{196,198}Нg

Свойства основной полосы положительной четности в четных ядрах ртути были описаны в терминах двухквазичастичного возбуждения (случай вращательного выстраивания [6]). Также предлагалась модель, в которой модель асимметричного ротатора Давыдова расширялась с включением взаимодействия между 0₁⁺ и 2₁⁺ квазичастичными возбуждениями, и результаты ее сравнивались с расчетами модели переменного момента инерции, также расширенной с учетом γ-деформаций. Для описания высокоспиновых состояний 10⁺ и 12⁺

рассматривались только ($vi_{13/2}^{-2}$) и ($\pi h_{11/2}^{-2}$)конфигурации. Это значит, что эти состояния образуются вследствие выстраивания и развязывания нуклонной пары от системы ротатора силой Кориолиса. Был сделан вывод, что в случае $(\pi h_{11/2}^{-2})$ конфигурации состояния 10⁺ и 8⁺ должны вырождаться, в то время как для (vi⁻²_{13/2})-конфигурации состояния 12⁺, 10⁺ и 8⁺ должны быть близко расположены друг к другу. Поскольку на практике наблюдается последнее, то в ядрах ^{196,198}Hg тесно расположенные состояния 8⁺, 10⁺ и 12⁺ интерпретируются как вращательно-выстроенные состояния со структурой (vi $_{13/2}^{-2}$) и для них характерными являются малые отрицательные значения g-факторов (в противоположность большим положительным значениям для структуры типа ($\pi h_{11/2}^{-2}$)).

Для состояния 12^+ со структурой (vi $_{13/2}^{-2}$) gфактор выражается как [16]

$$g = g_R + (g_i - g_R) \frac{I_s}{I}, \qquad (5)$$

где g_R - коллективный g-фактор; I_s - выстроенный спин развязанной частицы. В случае полного выстраивания $I_s = I$ и g-фактор равен одночастичному g_i . Из систематики экспериментальных данных для изотопов ртути и платины [17] следует значение $g_{ef}(i_{13/2}) \approx -0.16$. Используя эту величину, видим, что полученный g-фактор состояний 10⁺ и 12⁺ в ^{196,198} Нg согласуется с рассматриваемой интерпретацией. Для состояний 10⁺ в работе [14] было получено следующее значение g-фактора: $g(10^+) = -0.24(4)$ для ¹⁹⁴ Hg, что также хорошо согласуется с полученными нами величинами g-факторов $g(12^+$ и $10^+) = -0.19(6)$ для ¹⁹⁶ Hg и $g(12^+$ и $10^+) = -0.18(8)$ для ¹⁹⁸ Hg.

3.2. 7⁻ состояния в ядрах ^{196,198}Нg

Ядерные *g*-факторы позволяют не только различать протонные и нейтронные состояния, но и делать выводы о форме исследуемых ядер, *g*-факторы состояний 7⁻ в соседних ядрах ^{200,206}Pb и ^{186,188}Os имеют значения в диапазоне от -0.2 до -0.04. Форма ядер ^{186,188}Os вытянутая, ядра ^{200,206}Pb – сферические, ядрам же ^{196,198}Hg и ^{190,192,194}Pt первоначально приписывалась сплющенная форма, поэтому изменение *g*-факторов в этих ядрах от малых отрицательных до больших положительных выглядит неожиданным.

Полосы отрицательной четности в ядрах изотопов ртути описываются в рамках модели "аксиально-симметричный сплющенный ротатор + две квазичастицы" [5]. В этом случае вблизи поверхности Ферми оказываются нейтронные состояния типа $(v_{i_{13/2}}, v_j)^2$. Однако в соседних ядрах платины уровни 5⁻ и 7⁻ расположены на 300 - 400 кэВ ниже, чем в ядрах ртути, и расчеты, сделанные в этой модели для ядер платины, оказались существенно расходящимися с экспериментальными данными.

Поэтому для описания энергетики полос отрицательной четности в ядрах ^{190,192,194} Рt модель "аксиально-симметричный ротатор + две квазичастицы" была расширена с учетом неаксиальных деформаций [2,], что означает у-нестабильную (переходную) форму этих ядер. При этом оказывается, что внутренняя структура состояний, образующих эти полосы, определяется преимущественно протонами, находящимися вблизи поверхности Ферми, что соответствует $(\pi h_{11/2}, \pi j)^2$ -конфигурации этих состояний. Выполненные измерения [1] g-факторов состояний 7⁻ в ядрах ^{190,192,194} Рt подтвердили теоретические предсказания, поскольку значения g-факторов оказались большими и положительными.

Основные компоненты волновой функции состояния 7⁻ в ¹⁹²Нg в рамках модели "аксиальносимметричный ротатор + две квазичастицы" [8], состоящей на 15 % из протонной и на 85 % из нейтронной конфигураций:

$$|7^{-}\rangle = -0.25 |(\pi h_{11/2}, \pi d_{3/2})7^{-} \otimes 0^{+}\rangle + 0.31 |(\nu i_{13/2}, \nu p_{1/2})7^{-} \otimes 0^{+}\rangle + + 0.38 |(\nu i_{13/2}, \nu p_{3/2})5^{-} \otimes 2^{+}\rangle + -0.33 |(\nu i_{13/2}, \nu p_{3/2})7^{-} \otimes 0^{+}\rangle + + -0.37 |(\nu i_{13/2}, \nu f_{5/2})7^{-} \otimes 0^{+}\rangle + -0.20 |(\nu i_{13/2}, \nu f_{5/2})7^{-} \otimes 2^{+}\rangle + + 0.33 |(\nu i_{13/2}, \nu f_{5/2})9^{-} \otimes 2^{+}\rangle + 0.26 |(\nu i_{13/2}, \nu f_{7/2})3^{-} \otimes 4^{+}\rangle + ...$$

$$(6)$$

С этой волновой функцией и эффективными одночастичными g-факторами вычисленный g-фактор состояния 7⁻ в ¹⁹²Нg равен 0.02(6), что очень близко к экспериментальным данным.

Заключение

g-факторы состояний 12^+ и 10^+ подтверждают нейтронную (vi⁻²_{13/2}) структуру этих состояний. *g*-факторы состояний 7⁻ подтверждают применимость модели «аксиально-симметричный сплющенный ротатор + две квазичастицы» для описания энергий ядер ртути. Сравнение полученных g-факторов с соответственными g-факторами состояний 7⁻ в соседних ядрах платины подтверждают предсказания модели «неаксиальный ро-

- Levon A.I. et al. // Nucl. Phys. 2006. Vol. A764. -P. 24.
- 2. *Yadav H.L., Faessler A., Toki H., Castel B. //* Phys. Lett. 1980. Vol. 89B. P. 307.
- 3. *Toki H., Neergård K., Vogel P., Faessler A.* // Nucl. Phys. 1977. Vol. A279. P. 1.
- 4. *Yadav L., Toki H., Faessler A.* // Phys. Rev. Lett. 1977. Vol. 39. P. 1128.
- Neergård K., Vogel P., Radomski M. // Nucl. Phys. -1975. - Vol. A238. - P. - 199H.
- Stephens F. S., Simon R.S. // Nucl. Phys. 1972. -Vol. A 183. - P. - 257.
- Singh B. // Nucl. Data Sheets. 2003. Vol. 99. -P. 275.
- Baglin C.M. // Nucl. Data Sheets. 1998. Vol. 84. -P. 717.
- Browne E., Singh B. // Nucl. Data Sheets. 1996. -Vol. 79. - P. 277.

татор + две квазичастицы» о переходной форме этих ядер. Сравнение g-факторов состояний 7⁻ в ядрах ^{196,198}Нg и ^{190,192,194}Pt позволяют сделать вывод о смене структуры этих состояний от преимущественно (vi⁻²_{13/2}) в ядрах ртути до преимущественно ($\pi h_{11/2}^{-2}$) в ядрах платины.

Авторы благодарят Sektion Physik, University of Munich, Germany за предоставленные HPGe детекторы с антикомптоновской защитой.

СПИСОК ЛИТЕРАТУРЫ

- 10. *Chunmei C., Gonging W., Zhenlan T.* // Nucl. Data Sheets. 1998. Vol. 83. P. 145.
- 11. *Chunmei C.* // Nucl. Data Sheets. 2002. Vol. 95. P. 591.
- 12. *Kroth R., Hardt K., Guttormsen M. et al.* // Phys. Lett. 1981. Vol. 99B. P. 209.
- 13. *Hjorth S.A., Lee I.Y., Beene J.R. et al.* // Phys. Rev. Lett. 1980. Vol. 45. P. 878.
- 14. *Kroth R., Bhattacherjee S.K., Günther Ch. et al.* // Phys. Lett. 1980. Vol. 97B. P. 197.
- Горбачев Б.И., Левон А.И., Немец О.Ф. и др. // Яд. физ. (Sov. J. Nucl. Phys.) - 1984. - Т. 39. - С. 518.
- Frauendorf S. // Phys. Lett. 1981. Vol. 100B. -P. 219.
- 17. Sergolle H., Aguer P., Bastin G. et al. // Z. Phys. 1983. Vol. A313. P. 289.

ЯДЕРНІ *g*-ФАКТОРИ ТА СТРУКТУРА ВИСОКОСПІНОВИХ 10⁺, 12⁺ ТА 7⁻ СТАНІВ В ІЗОТОПАХ ^{196,198}Нg

Ю. В. Носенко, О. І. Левон, І. Б. Ковгар, В. А. Оніщук, А. А. Шевчук

Для вимірювання g-факторів ізомерів у ядрах ^{196,198}Hg, заселених в (α , 2n)-реакції, було застосовано метод інтегрального збуреного кутового розподілу (I3KP) у зовнішньому магнітному полі. Отримано такі результати: ¹⁹⁶Hg, g(12⁺ та 10⁺) = -0.19(6), g(7⁻) = -0.030(17); ¹⁹⁸Hg, g(12⁺ та 10⁺) = -0.18(8), g(7⁻) = -0.033(14). Обговорюється внутрішня структура ізомерів. g-фактори станів 12⁺ та 10⁺ підтверджують модель "аксіально-симетричний ротатор + дві квазічастинки". Виміряні g-фактори 7⁻-станів в ізотопах ртуті дозволяють підтвердити передбачення моделі "аксіальний ротатор + дві квазічастинки" для ядер ртуті та перехід до триаксіальної форми в ядрах платини.

NUCLEAR g-FACTORS AND STRUCTURE OF THE HIGH-SPIN 10⁺, 12⁺ AND 7⁻ STATES IN ISOTOPS ^{196,198}Hg

Yu. V. Nosenko, A. I. Levon, I. B. Kovgar, V. A. Onischuk, A. A. Schevchuk

The integral perturbed angular distribution (IPAD) method in an external magnetic field has been used to measure the g-factors of isomers in the ^{196,198}Hg nuclei, populated in the (α , 2n)-reaction. The results are as follows: ¹⁹⁶Hg, g(12⁺ and 10⁺) = -0.19(6), g(7⁻) = -0.030(17); ¹⁹⁸Hg, g(12⁺ and 10⁺) = -0.18(8), g(7⁻) = -0.033(14). The intrinsic structure of the isomers is discussed. Measured g-factors of 12⁺ and 10⁺ states support model "axial-symmetric oblate rotor + two-quasiparticles". Measured g-factors of 7⁻ states in mercury allows to confirm prediction of model "axial-symmetric rotor plus two-quasiparticles" for Hg nuclei and transient form in the platinum nuclei.

Поступила в редакцию 04.07.06, после доработки – 29.09.06.