Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2007, volume 8, issue 1, pages 17-22.
Section: Nuclear Physics.
Received: 01.02.2007; Published online: 30.03.2007.
PDF Full text (en)
https://doi.org/10.15407/jnpae2007.01.017

Semiclassical inertia for nuclear collective rotation

A. M. Gzhebinsky1, A. G. Magner1, A. S. Sitdikov2

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Kazan State Power-Engineering University, Kazan, Russia

Abstract: The collective rotation motion is described within the local approximation of the semiclassical Gutzwiller trajectory approach to the response function theory through the cranking model. It is shown that the smooth local part of the moment of inertia for the collective rotation of deformed nuclei around the axis, perpendicular to the symmetry axis of the infinitely deep axially-symmetric square-well potential, is the rigid-body quantity. The "classical rotation" with the rigid-body inertia moment was found in the spherical limit.

References:

1. Alder K. et al. Rev. Mod. Phys. 28 (1956) 432. https://doi.org/10.1103/RevModPhys.28.432

2. Mikhailov I. N., Neergard K., Pashkevich V. V., Frauendorf S. Elem. Part. Nucl. 8 (1338) 1338.

3. Ring P., Schuck P. The Nuclear Many-Body Problem (New York: Springer-Verlag, 1980).

4. Brianson Ch., Mikhailov I. N. Elem. Part. Nucl. 13 (1982) 245.

5. Szymanski Z. Fast Nuclear Rotation (Oxford: Oxford Univ. Press, 1983).

6. Inglis D. R. Phys. Rev. 96 (1954) 1059; https://doi.org/10.1103/PhysRev.96.1059

Phys. Rev. 97 (1955) 701. https://doi.org/10.1103/PhysRev.97.701

7. Inglis D. R. Phys. Rev. 103 (1956) 1786. https://doi.org/10.1103/PhysRev.103.1786

8. Pashkevich V. V., Frauendorf S. Sov. J. Nucl. Phys. 20 (1975) 588;

Yad. Fiz. 20 (1974) 1122.

9. Preston M. A., Bhaduri R. K. Structure of the Nucleus (London: Addison-Wesley Publishing Company, Inc., 1975).

10. Bohr A., Mottelson B. Nuclear Structure (Vol. II, New York, 1975).

11. Bohr A. Rev. Mod. Phys. 48 (1976) 365. https://doi.org/10.1103/RevModPhys.48.365

12. Kolomietz V. M., Magner A. G., Strutinsky V. M. Sov. J. Nucl. Phys. 29 (1979) 1478.

13. Frauendorf S., Kolomietz V. M., Magner A. G., Sanzhur A. I. Phys. Rev. B 58 (1998) 5622. https://doi.org/10.1103/PhysRevB.58.5622

14. Strutinsky V. M. Nucl. Phys. A 95 (1967) 420; https://doi.org/10.1016/0375-9474(67)90510-6

Nucl. Phys. A 122 (1968) 1. https://doi.org/10.1016/0375-9474(68)90699-4

15. Brack M., Damgard L., Jensen A. S. et al. Rev. Mod. Phys. 44 (1972) 320. https://doi.org/10.1103/RevModPhys.44.320

16. Brack M., Bhaduri R. K. Semiclassical Physics. Frontiers in Physics (Addison-Wesley, Reading, MA., 1997); 2nd edition (Westview Press, Boulder, 2003).

17. Gutzwiller M. J. Math. Phys. 12 (1971) 343; https://doi.org/10.1063/1.1665596

Chaos in Classical and Quantum Mechanics (New York: Springer-Verlag, 1990).

18. Balian R. B., Bloch C. Ann. Phys. 69 (1972) 76. https://doi.org/10.1016/0003-4916(72)90006-1

19. Strutinsky V. M. Nukleonika 20 (1975) 679;

Strutinsky V. M., Magner A. G. Sov. Phys. Part. Nucl. 7 (1976) 138.

20. Strutinsky V. M., Magner A. G., Ofengenden S. R., Dössing T. Z. Phys. A 283 (1977) 269. https://doi.org/10.1007/BF01407208

21. Magner A. G., Arita K., Fedotkin S. N., Matsuyanagi K. Prog. Theor. Phys. 108 (2002) 853. https://doi.org/10.1143/PTP.108.853

22. Deleplanque M. A., Frauendorf S., Chu S. Y. et al. arXiv:nucl-th/0311073 v1 (20th Nov. 2003).

23. Hofmann H. Phys. Rep. 284 (1997) 137. https://doi.org/10.1016/S0370-1573(97)00006-9

24. Magner A. G., Vydrug-Vlasenko S. M., Hofmann H. Nucl. Phys. A 524 (1991) 31. https://doi.org/10.1016/0375-9474(91)90015-X

25. Magner A. G., Gzhebinsky A. M., Fedotkin S. N. Scientific Papers of the Institute for Nuclear Research 1 (2005) 7.

26. Magner A. G., Gzhebinsky A. M., Fedotkin S. N. Phys. At. Nucl. 70 (2007) 647. https://doi.org/10.1134/S1063778807040059

27. Magner A. G., Gzhebinsky A. M., Fedotkin S. N. Phys. At. Nucl. in print (2007).

28. Hofmann H., Ivanyuk F. A., Yamaji J. Nucl. Phys. A 598 (1996) 187. https://doi.org/10.1016/0375-9474(95)00442-4

29. Blocki J., Bonch Y., Nix J. R., Swiatecki W. J. Ann. of Phys. 113 (1978) 330. https://doi.org/10.1016/0003-4916(78)90208-7

30. Koonin S. E., Randrup J. Nucl. Phys. A 289 (1977) 475. https://doi.org/10.1016/0375-9474(77)90047-1

31. Koonin S. E., Hatch R. L., Randrup J. Nucl. Phys. A 283 (1977) 87. https://doi.org/10.1016/0375-9474(77)90701-1

32. Kolomietz V. M. Bull. Acad. Sci. of the USSR 42 (1978) 49.

33. Yannouleas C., Broglia R. A. Ann. of Phys. 217 (1992) 105. https://doi.org/10.1016/0003-4916(92)90340-R

34. Kubo R., Toda M., Hashitsume N. Statistical Physics II. Nonequilibrium Statistical Mechanics (New York: Springer, 1985). https://doi.org/10.1007/978-3-642-96701-6

35. Magner A. G., Kolomietz V. M., Strutinsky V. M. Sov. J. Nucl. Phys. 28 (1978) 764.

36. Landau L. D., Lifshits E. M. Mechanics (New York: Pergamon, 1960).

37. Landau L. D., Lifshits E. M. Course of Theoretical Physics. Vol. 5. Statistical Physics (New York: Pergamon, 1992).