ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Determination of the 108-112Pd isotopes identity using interacting boson model
Mariam O. Waheed, Fadhil I. Sharrad*Abstract: Energy levels, B(E2) transition probabilities and potential energy surface for palladium isotopes with proton number Z = 46 and neutron numbers (n) between 62 and 66 have been calculated through the interacting boson model. The set of parameters used in these calculations are the best approximation that has been carried out so far. The ratio of the excitation energies of the first 4+1 and the first 2+1 excited states, R = E4+1/E2+1, is also calculated and an achievable degree of agreement has been investigated in O(6) symmetry for 108-112Pd nuclei. The comparison between the calculated energy levels and the transition probabilities B(E2) with those of the experimental show that it is a good agreement. The contour plot of the potential energy surfaces shows all nuclei of interests are deformed and have γ-unstable-like characters.
Keywords: interacting boson model, Pd isotopes, energy levels, ground band, B(E2).
References:1. F. Iachello, A. Arima. The Interacting Boson Model (Cambridge: Cambridge University Press, 1987). Google books
2. A. Bohr, B.R. Mottelson. Nuclear Structure: II. Nuclear Deformations (New York: Benjamin, 1975). Google books
3. Huda H. Kassim, Fadhil I. Sharrad. Energy levels and electromagnetic transition of 190–196Pt nuclei. Int. J. Mod. Phys. E 23 (2014) 1450070. https://doi.org/10.1142/S0218301314500700
4. P. Ring, P. Schuck. The Nuclear Many-Body Problem (Berlin: Springer, 1980). http://www.springer.com/la/book/9783540212065
5. T. Otsuka, A. Arima, F. Iachello. Nuclear shell model and interacting bosons. Nucl. Phys. A 309 (1978) 1. https://doi.org/10.1016/0375-9474(78)90532-8
6. F. Iachello, A. Arima. Boson symmetries in vibrational nuclei. Phys. Lett. B 53 (1974) 309. https://doi.org/10.1016/0370-2693(74)90389-X
7. A. Arima, F. Iachello. Collective Nuclear States as Representations of a SU(6) Group. Phys. Rev. Lett. 35 (1975) 1069. https://doi.org/10.1103/PhysRevLett.35.1069
8. I. Inc³, N. Turkan. IBM-2 Calculations of Selected Even-Even Palladium Nuclei. Turk. J. Phys. 30 (2006) 503. http://journals.tubitak.gov.tr/physics/issues/fiz-06-30-6/fiz-30-6-4-0603-2.pdf
9. A. Dewald et al. Collectivity of neutron-rich palladium isotopes and the valence proton symmetry. Phys. Rev. C 78 (2008) 051302. https://doi.org/10.1103/PhysRevC.78.051302
10. A. Shelley et al. Yrast states and electromagnetic reduced transition properties of 122Òå by means of interacting boson model-1. Problems of Atomic Science and Technology 3 (2015) 38. http://vant.kipt.kharkov.ua/ARTICLE/VANT_2015_3/article_2015_3_38.pdf
11. H.H. Khudher, A.K. Hasan, F.I. Sharrad. Transition Probabilities, and Potential Energy Surfaces for 120-126Xe Even-Even Isotopes. Ukr. J. Phys. 62 (2017) 152. https://doi.org/10.15407/ujpe62.02.0152
12. M. Boyukata et al. Extended interacting boson model description of Pd nuclei in the A ∼ 100 transitional region. EPJ Web of Conferences 66 (2014) 02013. https://doi.org/10.1051/epjconf/20146602013
13. M. Boyukata, P. Van Isacker, I. Uluer. Description of nuclei in the A ∼ 100 mass region with the interacting boson model. J. Phys. G 37 (2010) 105102. https://doi.org/10.1088/0954-3899/37/10/105102
14. I. Bentley, S. Frauendorf. Microscopic calculation of interacting boson model parameters by potential-energy surface mapping. Phys. Rev. C 83 (2011) 064322. https://doi.org/10.1103/PhysRevC.83.064322
15. DaLi Zhang, ChengFu Mu. Description of mixed symmetry states in 96Ru using IBM-2. Sci. China Phys., Mech. & Astron. 60 (2017) 042011. https://link.springer.com/article/10.1007/s11433-016-9003-4
16. I. Hossain et al. B(E2) value of even-even 108–112Pd isotopes by interacting boson model-1. Chinese Physics C 38 (2014) 024103. http://iopscience.iop.org/article/10.1088/1674-1137/38/2/024103
17. I. Hossain, H.Y. Abdullah, I.M. Ahmed. Nuclear structure of 110Pd and 110Cd isobar by interacting boson model (IBM-1). Probl. Atom. Sci. Tech. 3 (2015) 13. http://vant.kipt.kharkov.ua/ARTICLE/VANT_2015_3/article_2015_3_13.pdf
18. K. Abrahams, K. Allaart, A.E.L. Dieperink (ed.). Nuclear Structure (New York and London: Plenum press, 1981). https://doi.org/10.1007/978-1-4684-3950-2
19. R.F. Casten, D.D. Warner. The interacting boson approximation. Rev. Mod. Phys. 60 (1988) 389. https://doi.org/10.1103/RevModPhys.60.389
20. A. Okhunov et al. Correspondence between phenomenological and IBM-1 models of even isotopes of Yb. Chinese Physics C 39 (2015) 084101. https://doi.org/10.1088/1674-1137/39/8/084101
21. F. Iachello. Dynamical Supersymmetries in Nuclei. Phys. Rev. Lett. 44 (1980) 772. https://doi.org/10.1103/PhysRevLett.44.772
22. F.I. Sharrad et al. Low-lying states of 184W and 184Os nuclei. Chinese Physics C 37 (2013) 034101. https://doi.org/10.1088/1674-1137/37/3/034101
23. A. Arima, F. Iachello. Interacting Boson Model of Collective States I. The Vibrational Limit. Ann. Phys. 281 (2000) 2. https://doi.org/10.1006/aphy.2000.6007
24. R.F. Casten. Simplicity and complexity in nuclear structure. Romanian Reports in Phys. 57 (2005) 515. http://rrp.infim.ro/2005_57_4/02-515-526.pdf
25. E.A. McCutchan, R.F. Casten. Crossing contours in the interacting boson approximation (IBA) symmetry triangle. Phys. Rev. C 74 (2006) 057302. https://doi.org/10.1103/PhysRevC.74.057302
26. O. Scholten. Computer code PHINT, KVI (The Netherlands, Groningen, 1980).
27. http://www.nndc.bnl.gov/chart
28. J. Blachot. Nuclear Data Sheets for A = 108. Nucl. Data Sheets 81 (1997) 599. https://doi.org/10.1006/ndsh.1997.0016
29. G. Gurdal, F.G. Kondev. Nuclear Data Sheets for A = 110. Nucl. Data Sheets 113 (2012) 1315. https://doi.org/10.1016/j.nds.2012.05.002
30. D. de Frenne, E. Jacobs. Nuclear Data Sheets for A = 112. Nucl. Data Sheets 79 (1996) 639. https://doi.org/10.1006/ndsh.1996.0015
31. H.R. Yazar, U. Erdem. Nature of Excited States of Gadolinium Isotopes. Chinese J. Phys. 46 (2008) 270. http://psroc.org/cjp/issues.php?vol=46&num=3
32. W.D. Hamilton (ed.). The Electromagnetic Interaction in Nuclear Spectroscopy (New York: American Elsevier Publishing Company, 1975). Google books