ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Joint analysis of Borexino and SNO solar neutrino data and reconstruction of the survival probability
Francesco Vissani1,2*Abstract: Solar neutrino oscillations are supported by KamLAND’s antineutrino measurements, but certain solar neutrino data – the observed shape of the 8B flux and the difference between day and night counting rates measured in Super-K – do not fit well with the ensuing oscillation pattern. Interestingly, other solar neutrino data allow independent tests of the survival probability. Thanks to the new measurements of Borexino at low-energies along with the standard solar model and to the results of SNO at high-energies, four values of the neutrino survival probability are known. We build and study a likelihood based only on these solar neutrino data. The results agree well with the standard oscillation pattern and in particular with KamLAND findings. A related and straightforward procedure permits to reconstruct the survival probability of solar neutrinos and to assess its uncertainties, for all solar neutrino energies.
Keywords: solar neutrinos, neutrino oscillations, nuclear astrophysics, pp neutrinos, pep neutrinos, 7Be neutrinos, 8B neutrinos.
References:1. Borexino Collaboration (M. Agostini et al.). First simultaneous precision spectroscopy of pp, 7Be and pep solar neutrinos with Borexino phase-II. arXiv: 1707.09279 [hep-ex], submitted for publication. https://arxiv.org/abs/1707.09279
2. L. Wolfenstein. Neutrino oscillations in matter. Phys. Rev. D 17 (1978) 2369.
https://doi.org/10.1103/PhysRevD.17.2369;
S.P. Mikheyev, A.Yu. Smirnov. Resonant amplification of neutrino oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 42 (1986) 913.
3. SNO Collaboration (A. Bellerive et al.). The Sudbury Neutrino Observatory. Nucl. Phys. B 908 (2016) 30. https://doi.org/10.1016/j.nuclphysb.2016.04.035
4. KamLAND Collaboration (A. Gando et al.). Reactor on-off antineutrino measurement with KamLAND. Phys. Rev. D 88 (2013) 033001. https://doi.org/10.1103/PhysRevD.88.033001
5. Super-Kamiokande Collaboration (K. Abe et al.). Solar neutrino measurements in Super-Kamiokande-IV. Phys. Rev. D 94 (2016) 052010. https://doi.org/10.1103/PhysRevD.94.052010
6. F. Capozzi et al. Global constraints on absolute neutrino masses and their ordering. Phys. Rev. D 95 (2017) 096014. https://doi.org/10.1103/PhysRevD.95.096014
7. I. Esteban et al. Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity. JHEP 01 (2017) 087. https://doi.org/10.1007/JHEP01(2017)087
8. P.F. de Salas et al. Status of neutrino oscillations 2017. arXiv:1708.01186 [hep-ph], submitted for publication. https://arxiv.org/abs/1708.01186
9. P.C. de Holanda, A.Y. Smirnov. Solar neutrino spectrum, sterile neutrinos, and additional radiation in the Universe. Phys. Rev. D 83 (2011) 113011. https://doi.org/10.1103/PhysRevD.83.113011
10. A. Palazzo. Hint of nonstandard Mikheyev-Smirnov-Wolfenstein dynamics in solar neutrino conversion. Phys. Rev. D 83 (2011) 101701. https://doi.org/10.1103/PhysRevD.83.101701
11. F. Vissani. Solar neutrino physics on the beginning of 2017. Nucl. Phys. At. Energy 18(1) (2017) 5. https://jnpae.kinr.kyiv.ua/18.1/html/18.1.0005.html
12. J.N. Bahcall, A.M. Serenelli, S. Basu. New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes. Astrophys. J. 621 (2005) L85. https://doi.org/10.1086/428929
13. N. Vinyoles et al. A New Generation of Standard Solar Models. Astrophys. J. 835 (2017) 202. https://doi.org/10.3847/1538-4357/835/2/202
14. D.G. Yakovlev et al. Simple analytic model for astrophysical S factors. Phys. Rev. C 82 (2010) 044609. https://doi.org/10.1103/PhysRevC.82.044609
15. E.G. Adelberger et al. Solar fusion cross sections. II. The pp chain and CNO cycles. Rev. Mod. Phys. 83 (2011) 195. https://doi.org/10.1103/RevModPhys.83.195
16. R.J. de Boer et al. Monte Carlo uncertainty of the 3He(α, γ)7Be reaction rate. Phys. Rev. C 90 (2014) 035804. https://doi.org/10.1103/PhysRevC.90.035804
18. Int. Conf. “Recent Developments in Neutrino Physics and Astrophysics”, 4 - 7 Sept. 2017, Assergi, Italy. https://agenda.infn.it/conferenceOtherViews.py?view=standardshort&confId=12485
19. B.T. Cleveland et al. Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector. Astrophys. J. 496 (1998) 505. https://doi.org/10.1086/305343
20. SAGE Collaboration (J.N. Abdurashitov et al.). Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002 - 2007 data-taking period. Phys. Rev C 80 (2009) 015807. https://doi.org/10.1103/PhysRevC.80.015807
21. F. Kaether et al. Reanalysis of the Gallex solar neutrino flux and source experiments. Phys. Lett. B 685 (2010) 47. https://doi.org/10.1016/j.physletb.2010.01.030
22. Borexino Collaboration (G. Bellini et al.). Absence of a day-night asymmetry in the 7Be solar neutrino rate in Borexino. Phys. Lett. B 707 (2012) 22. https://doi.org/10.1016/j.physletb.2011.11.025
23. Borexino Collaboration (M. Agostini et al.). Improved measurement of 8B solar neutrinos with 1.5 kt y of Borexino exposure. arXiv:1709.00756 [hep-ex], submitted for publication. https://arxiv.org/abs/1709.00756
24. J.N. Bahcall et al. Standard neutrino spectrum from 8B decay. Phys. Rev. C 54 (1996) 411. https://doi.org/10.1103/PhysRevC.54.411
25. W.T. Winter et al. The 8B neutrino spectrum. Phys. Rev. C 73 (2006) 025503. https://doi.org/10.1103/PhysRevC.73.025503
26. F. Vissani. We saw the engine of the Sun! https://www.linkedin.com/pulse/last-we-know-how-sun-works-francesco-vissani/?published=t