Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2016, volume 17, issue 1, pages 22-26.
Section: Nuclear Physics.
Received: 26.10.2015; Accepted: 11.04.2016; Published online: 02.06.2016.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2016.01.022

New analytical forms of a deuteron wave function for potentials of the Nijmegen group

V. I. Zhaba*

Uzhhorod National University, Uzhhorod, Ukraine

*Corresponding author. E-mail address: viktorzh@meta.ua.

Abstract: To approximate the deuteron wave function in coordinate representation, two new analytical forms were proposed. They are represented as the product of the power function rn for the sum of exponential terms Ai⋅exp(-ai⋅r3). For realistic phenomenological potentials of the Nijmegen group these forms are constructed as deuteron wave function in the coordinate representation, which do not contain superfluous knots. The calculated parameters of the deuteron are compared with experimental and theoretical data.

Keywords: wave functions, analytical form, deuteron, knot.

References:

1. R. Machleidt. The nuclear force in the third millennium. Nucl. Phys. A 689(1) (2001) 11. https://doi.org/10.1016/S0375-9474(01)00814-4

2. R. Machleidt. High-precision, charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C 63 (2001) 024001. https://doi.org/10.1103/PhysRevC.63.024001

3. R. Courant, D. Hilbert. Methods of Mathematical Physics (New York: Interscience, 1953) 561 p. Google Books

4. I. Haysak, V. Zhaba. On the nods of the deuteron wave function. Visnyk Lviv Univ. Ser. Phys. 44 (2009) 8. (Ukr)

5. ².I. Haysak, V.I. Zhaba. Deuteron: wave function and parameters. Uzhhorod Univ. Scien. Herald. Ser. Phys. 36 (2014) 100. (Ukr)

6. V.S. Bohinyuk, V.I. Zhaba, A.M. Parlag. On the reaction cross section energy dependence (γγ ). Uzhhorod Univ. Scien. Herald. Ser. Phys. 31 (2012) 111. (Ukr)

7. V.I. Kukulin, V.N. Pomerantsev, A. Faessler et al. Moscow-type NN-potentials and three-nucleon bound states. Phys. Rev. C 57(2) (1998) 535. https://doi.org/10.1103/PhysRevC.57.535

8. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen et al. Construction of high quality NN potential models. Phys. Rev. C 49(6) (1994) 2950. https://doi.org/10.1103/PhysRevC.49.2950

9. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla. Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 51(1) (1995) 38. https://doi.org/10.1103/PhysRevC.51.38

10. M. Lacombe, B. Loiseau, R. Vinh Mau et al. Parametrization of the deuteron wave function of the Paris N-N potential. Phys. Lett. B 101(3) (1981) 139. https://doi.org/10.1016/0370-2693(81)90659-6

11. S.B. Dubovichenko. Properties of light atomic nuclei in the potential cluster model (Almaty: Daneker, 2004) 247 p. (Rus) https://arxiv.org/abs/1006.4944

12. A.F. Krutov, V.E. Troitsky. Parametrization of the deuteron wave function obtained within a dispersion approach. Phys. Rev. C 76 (2007) 017001. https://doi.org/10.1103/PhysRevC.76.017001

13. J.J. de Swart, R.A.M.M. Klomp, M.C.M. Rentmeester, Th.A. Rijken. The Nijmegen Potentials. Few-Body Systems Suppl. 8 (1995) 438. https://doi.org/10.1007/978-3-7091-9427-0_65

14. M. Garcon, J.W. Van Orden. The deuteron: structure and form factors. Adv. Nucl. Phys. 26 (2001) 293. http://doi.org/10.1007/b100336

15. V.P. Ladygin, N.B. Ladygina. Polarization effects in inelastic deuteron scattering in the region of baryon-resonance excitation. Phys. At. Nucl. 65(1) (2002) 182. (Rus) https://doi.org/10.1134/1.1446569