ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
New analytical forms of a deuteron wave function for potentials of the Nijmegen group
V. I. Zhaba*Abstract: To approximate the deuteron wave function in coordinate representation, two new analytical forms were proposed. They are represented as the product of the power function rn for the sum of exponential terms Ai⋅exp(-ai⋅r3). For realistic phenomenological potentials of the Nijmegen group these forms are constructed as deuteron wave function in the coordinate representation, which do not contain superfluous knots. The calculated parameters of the deuteron are compared with experimental and theoretical data.
Keywords: wave functions, analytical form, deuteron, knot.
References:1. R. Machleidt. The nuclear force in the third millennium. Nucl. Phys. A 689(1) (2001) 11. https://doi.org/10.1016/S0375-9474(01)00814-4
2. R. Machleidt. High-precision, charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C 63 (2001) 024001. https://doi.org/10.1103/PhysRevC.63.024001
3. R. Courant, D. Hilbert. Methods of Mathematical Physics (New York: Interscience, 1953) 561 p. Google Books
4. I. Haysak, V. Zhaba. On the nods of the deuteron wave function. Visnyk Lviv Univ. Ser. Phys. 44 (2009) 8. (Ukr)
5. ².I. Haysak, V.I. Zhaba. Deuteron: wave function and parameters. Uzhhorod Univ. Scien. Herald. Ser. Phys. 36 (2014) 100. (Ukr)
6. V.S. Bohinyuk, V.I. Zhaba, A.M. Parlag. On the reaction cross section energy dependence (γγ ’). Uzhhorod Univ. Scien. Herald. Ser. Phys. 31 (2012) 111. (Ukr)
7. V.I. Kukulin, V.N. Pomerantsev, A. Faessler et al. Moscow-type NN-potentials and three-nucleon bound states. Phys. Rev. C 57(2) (1998) 535. https://doi.org/10.1103/PhysRevC.57.535
8. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen et al. Construction of high quality NN potential models. Phys. Rev. C 49(6) (1994) 2950. https://doi.org/10.1103/PhysRevC.49.2950
9. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla. Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 51(1) (1995) 38. https://doi.org/10.1103/PhysRevC.51.38
10. M. Lacombe, B. Loiseau, R. Vinh Mau et al. Parametrization of the deuteron wave function of the Paris N-N potential. Phys. Lett. B 101(3) (1981) 139. https://doi.org/10.1016/0370-2693(81)90659-6
11. S.B. Dubovichenko. Properties of light atomic nuclei in the potential cluster model (Almaty: Daneker, 2004) 247 p. (Rus) https://arxiv.org/abs/1006.4944
12. A.F. Krutov, V.E. Troitsky. Parametrization of the deuteron wave function obtained within a dispersion approach. Phys. Rev. C 76 (2007) 017001. https://doi.org/10.1103/PhysRevC.76.017001
13. J.J. de Swart, R.A.M.M. Klomp, M.C.M. Rentmeester, Th.A. Rijken. The Nijmegen Potentials. Few-Body Systems Suppl. 8 (1995) 438. https://doi.org/10.1007/978-3-7091-9427-0_65
14. M. Garcon, J.W. Van Orden. The deuteron: structure and form factors. Adv. Nucl. Phys. 26 (2001) 293. http://doi.org/10.1007/b100336
15. V.P. Ladygin, N.B. Ladygina. Polarization effects in inelastic deuteron scattering in the region of baryon-resonance excitation. Phys. At. Nucl. 65(1) (2002) 182. (Rus) https://doi.org/10.1134/1.1446569