Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2013, volume 14, issue 4, pages 317-320.
Section: Nuclear Physics.
Received: 25.11.2013; Published online: 30.12.2013.
PDF Full text (en)
https://doi.org/10.15407/jnpae2013.04.317

Predictive power of nuclear-mass models

Yu. A. Litvinov1, A. Sobiczewski1,2, E. A. Cherepanov3

1GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
2National Centre for Nuclear Research, Warsaw, Poland
3Joint Institute for Nuclear Research, Dubna, Moscow region, Russia

Abstract: Ten different theoretical models are tested for their predictive power in the description of nuclear masses. Two sets of experimental masses are used for the test: the older set of 2003 and the newer one of 2011. The predictive power is studied in two regions of nuclei: the global region (Z, N ≥ 8) and the heavy-nuclei region (Z ≥ 82, N ≥ 126). No clear correlation is found between the predictive power of a model and the accuracy of its description of the masses.

Keywords: nuclear mass, nuclear models, accuracy of a model, predictive power of a model, heavy nuclei, global region of nuclei.

References:

1. Audi G., Wang Meng. Private communication (April 2011).

2. Audi G., Wapstra A. H., Thibault C. Nucl. Phys. 729 (2003) 337. https://doi.org/10.1016/j.nuclphysa.2003.11.003

3. Litvinov Yu. A., Sobiczewski A., Parkhomenko A., Cherepanov E. A. Int. J. Mod. Phys. E 21 (2012) 1250038. https://doi.org/10.1142/S0218301312500383

4. Liran S., Marinov A., Zeldes N. Phys. Rev. C 62 (2000) 047301. https://doi.org/10.1103/PhysRevC.62.047301

5. Möller P., Nix J. R., Myers W. D., Świątecki W. J. At. Data Nucl. Data Tables 59 (1995) 185. https://doi.org/10.1006/adnd.1995.1002

6. Myers W. D., Świątecki W. J. Nucl. Phys. A 601 (1996) 141. https://doi.org/10.1016/0375-9474(95)00509-9

7. Muntian I., Patyk Z., Sobiczewski A. Acta Phys. Pol. B 32 (2001) 691. https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=32&page=691

8. Sobiczewski A., Pomorski K. Prog. Part. Nucl. Phys. 58 (2007) 292. https://doi.org/10.1016/j.ppnp.2006.05.001

9. Pomorski K., Dudek J. Phys. Rev. C 67 (2003) 044316. https://doi.org/10.1103/PhysRevC.67.044316

10. Goriely S., Chamel N., Pearson J. M. Phys. Rev. C 82 (2010) 035804. https://doi.org/10.1103/PhysRevC.82.035804

11. Goriely S., Hilaire S., Girod M., Peru S. Phys. Rev. Lett. 102 (2009) 242501. https://doi.org/10.1103/PhysRevLett.102.242501

12. Duflo J., Zuker A. P. Phys. Rev. C 52 (1995) R23. https://doi.org/10.1103/PhysRevC.52.R23

13. Koura H., Tachibana T., Uno M., Yamada M. Prog. Theor. Phys. 113 (2005) 305. https://doi.org/10.1143/PTP.113.305