Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2011, volume 12, issue 4, pages 407-413.
Section: Engineering and Methods of Experiment.
Received: 01.07.2011; Published online: 30.12.2011.
PDF Full text (en)
https://doi.org/10.15407/jnpae2011.04.407

Fokker-Planck equation solver for study of stochastic cooling in storages rings

M. E. Dolinska1

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: In this paper the so-called PDE-method for solution of the Fokker-Planck Equation is proposed to study the beam dynamics in the storage ring, where the stochastic cooling is used. This method has been implemented in the new FOPLEQ code. The results of numerical calculations obtained by this code are presented. Calculated results by PDE-method are compared with other numerical algorithms. Application, stability, convergence and precision of the proposed method are discussed.

Keywords: Fokker-Planck equation, stochastic cooling, evolution of the particle distribution.

References:

1. Pauluhn A. Stochastic Beam Dynamics in Storage Rings. Thesis - DESY - 93-198 (Hamburg, 1993).

2. Risken H. The Fokker-Planck Equation: Methods of Solutions and Applications (Springer-Verlag, 1984) 485 p. https://doi.org/10.1007/978-3-642-96807-5

3. Auzinger W. Numerik partieller Differentialgleichungen: Eine Einführung (Jones and Bartlett Publishers, 2003).

4. Rannacher R. Numerische Mathematik. Numerik gewöhnlicher Differentialgleichungen (Universitet: Geidelberg Vorlesungs-kriptum SS, 2007).

5. Voss A., Voss J. A fast numerical algorithm for the estimation of diffusion model parameters. J. Math. Psychology 52 (2008) 1. https://doi.org/10.1016/j.jmp.2007.09.005

6. Bluman G. W., Reid G. J. Sequences of related linear PDEs. J. of Math. Analysis and Applications 144 (1989) 565. https://doi.org/10.1016/0022-247X(89)90352-1

7. Palleschi V., Sarri F., Marcozzi G., Torquati M. R. Numerical solution of the Fokker-Planck equation: A fast and accurate algorithm. Phys. Lett. A 146 (1990) 378. https://doi.org/10.1016/0375-9601(90)90717-3

8. Nolden F., Nesmiyan I., Peschke C. On stochastic cooling of multi-component fragment beams. Nucl. Instrum. Meth. A 564 (2006) 87. https://doi.org/10.1016/j.nima.2006.04.056

9. Katayama T., Tokuda N. Fokker-Planck approach to stochastic momentum cooling with a notch filter. Particle Accelerators 21 (1987) 99.

10. Conte S. D., deBoor, C. Elementary Numerical Analysis (New York: McGraw-Hill, 1972).

11. Yabe T., Xiao F., Utsumiy T. The Constrained Interpolation Profile Method for Multiphase Analysis. J. Comput. Phys. 169 (2001) 556. https://doi.org/10.1006/jcph.2000.6625

12. Takewaki H., Yabe T. The cubic-interpolated pseudo particle (CIP) method: application to nonlinear and multi-dimensional hyperbolic equations. J. Comput. Phys. 70 (1987) 355. https://doi.org/10.1016/0021-9991(87)90187-2

13. Kikuchi T., Kawata S., Katayama T. Numerical Solver with CIP method for Fokker-Planck Equation of Stochastic cooling. PAC07, THPAN048 (Albuquerque, New Mexica, USA) p. 3336.

14. Dolinskii A., Gorda O., Litvinov S. D. et al. The CR-RESR Storage Ring Complex of the FAIR Project. Proc. of the 11th Europ. Particle Accelerator Conference, EPAC'08’ (Genoa, Italy, June, 2008).

15. Dolinskii A., Nolden F., Steck M. Lattice Considerations for the Collector and Accumulator Ring of the FAIR Project. Proc. of the "COOL'07 Conference" (Bad Kreuznach, September, 2007) p. 106.

16. Möhl D., Petrucci G., Thorndahl L., van der Meer S. Physics and technique of stochastic cooling. Physics Reports 58 (1980) 73. https://doi.org/10.1016/0370-1573(80)90140-4

17. Thorndal L., Möhl D. CERN code for calculation of stochastic cooling. Private communications.