Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2011, volume 12, issue 4, pages 325-334.
Section: Nuclear Physics.
Received: 09.09.2011; Published online: 30.12.2011.
PDF Full text (en)
https://doi.org/10.15407/jnpae2011.04.325

Non-Markovian nuclear dynamics

V. M. Kolomietz1

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: A prove of equations of motion for the nuclear shape variables which establish a direct connection of the memory effects with the dynamic distortion of the Fermi surface is suggested. The equations of motion for the nuclear Fermi liquid drop are derived from the collisional kinetic equation. In general, the corresponding equations are non-Markovian. The memory effects appear due to the Fermi surface distortions and depend on the relaxation time. The main purpose of the present work is to apply the non-Markovian dynamics to the description of the nuclear giant multipole resonances (GMR) and the large amplitude motion. We take also into consideration the random forces and concentrate on the formation of both the conservative and the friction forces to make more clear the memory effect on the nuclear dynamics. In this respect, the given approach represents an extension of the traditional liquid drop model (LDM) to the case of the nuclear Fermi liquid drop. In practical application, we pay close attention to the description of the descent of the nucleus from the fission barrier to the scission point.

Keywords: Fermi liquid, giant multipole resonances, nuclear fission, memory effects.

References:

1. Hasse R. W., Myers W. D. Geometrical Relationships of Macroscopic Nuclear Physics (Berlin: SpringerVerlag, 1988) 296 p. https://doi.org/10.1007/978-3-642-83017-4

2. Myers W. D., Swiatecki W. J. The nuclear drop model for arbitrary shapes. Ann. of Phys. 84 (1967) 186. https://doi.org/10.1016/0003-4916(74)90299-1

3. Бор О., Моттельсон Б. Структура атомного ядра. Т. 2 (Москва: Мир, 1977) 664 с.

4. Nix J. R., Sierk A. J., Hofmann H. et al. Stationary Fokker-Planck equation applied to fission dynamics. Nucl. Phys. A 424 (1984) 239. https://doi.org/10.1016/0375-9474(84)90184-2

5. Ivanyuk F. A., Kolomietz V. M., Magner A. G. Liquid drop surface dynamics for large nuclear deformations. Phys. Rev. C 52 (1995) 678. https://doi.org/10.1103/PhysRevC.52.678

6. Nix J. R., Sierk A. J. Microscopic description of isoscalar giant multipole resonances. Phys. Rev. C 21 (1980) 396. https://doi.org/10.1103/PhysRevC.21.396

7. Kolomietz V. M., Shlomo S. Nuclear Fermi-liquid drop model. Phys. Rep. 690 (2004) 133. https://doi.org/10.1016/j.physrep.2003.10.013

8. Holzwarth G., Eckart G. Fluid-dynamical approximation for finite Fermi systems. Nucl. Phys. A 325 (1979) 1. https://doi.org/10.1016/0375-9474(79)90148-9

9. Kolomietz V. M., Radionov S. V., Shlomo S. Memory effects on descent from nuclear fission barrier. Phys. Rev. C 64 (2001) 054302. https://doi.org/10.1103/PhysRevC.64.054302

10. Kolomietz V. M., Åberg S., Radionov S. V. Collective motion in quantal diffusive environment. Phys. Rev. C 77 (2008) 014305. https://doi.org/10.1103/PhysRevC.77.014305

11. Kolomietz V. M., Radionov S. V., Shlomo S. The influence of memory effects on dispersions of kinetic energy at nuclear fission. Physica Scripta 73 (2006) 458. https://doi.org/10.1088/0031-8949/73/5/008

12. Ring P., Schuck P. The Nuclear Many-Body Problem (Berlin: Springer-Verlag, 1980) 711 p.

13. Kolomietz V. M., Tang H. H. K. Microscopic and Macroscopic Aspects of Nuclear Dynamics in Mean-Field Approximation. (I. Formalism). Physica Scripta 24 (1981) 915. https://doi.org/10.1088/0031-8949/24/6/001

14. Коломиец В. М. Приближение локальной плотности в атомной и ядерной физике (Київ: Наук. думка, 1990) 164 с.

15. Коломиец В. М. Квантовая ядерная гидродинамика в приближении среднего поля. Ядерная физика 37 (1983) 547.

16. Hillery M., O’Connell R. F., Scully M. O., Wigner E. P. Distribution functions in physics: Fundamentals. Phys. Rep. 106 (1984) 121. https://doi.org/10.1016/0370-1573(84)90160-1

17. Ballentine L. E. Quantum mechanics: A modern development (World Scientific, 1998) 676 p. https://doi.org/10.1142/3142

18. Лифшиц E. M., Питаевский Л. П. Физическая кинетика (Москва: Наука, 1979) 527 с.

19. Baym G., Pethick C. J. Landau Fermi Liquid Theory (New York: J. Wiley & Sons, 1991) 200 p. https://doi.org/10.1002/9783527617159

20. Abrikosov A. A., Khalatnikov I. M. The theory of a Fermi liquid. Rep. Prog. Phys. 22 (1959) 329. https://doi.org/10.1088/0034-4885/22/1/310

21. Fuls D. C., Kolomietz V. M., Lukyanov S. V., Shlomo S. Damping effects on centroid energies of isoscalar compression modes. Europhys. Lett. 90 (2010) 20006. https://doi.org/10.1209/0295-5075/90/20006

22. Kolomietz V. M., Lukyanov S. V. A-dependence of enhancement factor in energy-weighted sums for isovector giant resonances. Phys. Rev. C 79 (2009) 024321. https://doi.org/10.1103/PhysRevC.79.024321

23. Kolomietz V. M., Plujko V. A., Shlomo S. Collisional damping in heated nuclei within Landau-Vlasov kinetic equation. Phys. Rev. C 52 (1995) 2480. https://doi.org/10.1103/PhysRevC.52.2480

24. Kolomietz V. M., Plujko V. A., Shlomo S. Interplay between one-body and collisional damping of collective motion in nuclei. Phys. Rev. C 54 (1996) 3014. https://doi.org/10.1103/PhysRevC.54.3014

25. Di Toro M., Kolomietz V. M., Larionov A. B. Isovector vibrations in nuclear matter at finite temperature. Phys. Rev. C 59 (1999) 3099. https://doi.org/10.1103/PhysRevC.59.3099

26. Коломиец В. М., Константинов Б. Д., Струтинский В. М., Хворостьянов В. И. К теории оболочечной структуры ядер. ЭЧАЯ 3 (1972) 392.