Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Non-Markovian nuclear dynamics
V. M. Kolomietz1
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: A prove of equations of motion for the nuclear shape variables which establish a direct connection of the memory effects with the dynamic distortion of the Fermi surface is suggested. The equations of motion for the nuclear Fermi liquid drop are derived from the collisional kinetic equation. In general, the corresponding equations are non-Markovian. The memory effects appear due to the Fermi surface distortions and depend on the relaxation time. The main purpose of the present work is to apply the non-Markovian dynamics to the description of the nuclear giant multipole resonances (GMR) and the large amplitude motion. We take also into consideration the random forces and concentrate on the formation of both the conservative and the friction forces to make more clear the memory effect on the nuclear dynamics. In this respect, the given approach represents an extension of the traditional liquid drop model (LDM) to the case of the nuclear Fermi liquid drop. In practical application, we pay close attention to the description of the descent of the nucleus from the fission barrier to the scission point.
Keywords: Fermi liquid, giant multipole resonances, nuclear fission, memory effects.
References:1. Hasse R. W., Myers W. D. Geometrical Relationships of Macroscopic Nuclear Physics (Berlin: SpringerVerlag, 1988) 296 p. https://doi.org/10.1007/978-3-642-83017-4
2. Myers W. D., Swiatecki W. J. The nuclear drop model for arbitrary shapes. Ann. of Phys. 84 (1967) 186. https://doi.org/10.1016/0003-4916(74)90299-1
3. Бор О., Моттельсон Б. Структура атомного ядра. Т. 2 (Москва: Мир, 1977) 664 с.
4. Nix J. R., Sierk A. J., Hofmann H. et al. Stationary Fokker-Planck equation applied to fission dynamics. Nucl. Phys. A 424 (1984) 239. https://doi.org/10.1016/0375-9474(84)90184-2
5. Ivanyuk F. A., Kolomietz V. M., Magner A. G. Liquid drop surface dynamics for large nuclear deformations. Phys. Rev. C 52 (1995) 678. https://doi.org/10.1103/PhysRevC.52.678
6. Nix J. R., Sierk A. J. Microscopic description of isoscalar giant multipole resonances. Phys. Rev. C 21 (1980) 396. https://doi.org/10.1103/PhysRevC.21.396
7. Kolomietz V. M., Shlomo S. Nuclear Fermi-liquid drop model. Phys. Rep. 690 (2004) 133. https://doi.org/10.1016/j.physrep.2003.10.013
8. Holzwarth G., Eckart G. Fluid-dynamical approximation for finite Fermi systems. Nucl. Phys. A 325 (1979) 1. https://doi.org/10.1016/0375-9474(79)90148-9
9. Kolomietz V. M., Radionov S. V., Shlomo S. Memory effects on descent from nuclear fission barrier. Phys. Rev. C 64 (2001) 054302. https://doi.org/10.1103/PhysRevC.64.054302
10. Kolomietz V. M., Åberg S., Radionov S. V. Collective motion in quantal diffusive environment. Phys. Rev. C 77 (2008) 014305. https://doi.org/10.1103/PhysRevC.77.014305
11. Kolomietz V. M., Radionov S. V., Shlomo S. The influence of memory effects on dispersions of kinetic energy at nuclear fission. Physica Scripta 73 (2006) 458. https://doi.org/10.1088/0031-8949/73/5/008
12. Ring P., Schuck P. The Nuclear Many-Body Problem (Berlin: Springer-Verlag, 1980) 711 p.
13. Kolomietz V. M., Tang H. H. K. Microscopic and Macroscopic Aspects of Nuclear Dynamics in Mean-Field Approximation. (I. Formalism). Physica Scripta 24 (1981) 915. https://doi.org/10.1088/0031-8949/24/6/001
14. Коломиец В. М. Приближение локальной плотности в атомной и ядерной физике (Київ: Наук. думка, 1990) 164 с.
15. Коломиец В. М. Квантовая ядерная гидродинамика в приближении среднего поля. Ядерная физика 37 (1983) 547.
16. Hillery M., O’Connell R. F., Scully M. O., Wigner E. P. Distribution functions in physics: Fundamentals. Phys. Rep. 106 (1984) 121. https://doi.org/10.1016/0370-1573(84)90160-1
17. Ballentine L. E. Quantum mechanics: A modern development (World Scientific, 1998) 676 p. https://doi.org/10.1142/3142
18. Лифшиц E. M., Питаевский Л. П. Физическая кинетика (Москва: Наука, 1979) 527 с.
19. Baym G., Pethick C. J. Landau Fermi Liquid Theory (New York: J. Wiley & Sons, 1991) 200 p. https://doi.org/10.1002/9783527617159
20. Abrikosov A. A., Khalatnikov I. M. The theory of a Fermi liquid. Rep. Prog. Phys. 22 (1959) 329. https://doi.org/10.1088/0034-4885/22/1/310
21. Fuls D. C., Kolomietz V. M., Lukyanov S. V., Shlomo S. Damping effects on centroid energies of isoscalar compression modes. Europhys. Lett. 90 (2010) 20006. https://doi.org/10.1209/0295-5075/90/20006
22. Kolomietz V. M., Lukyanov S. V. A-dependence of enhancement factor in energy-weighted sums for isovector giant resonances. Phys. Rev. C 79 (2009) 024321. https://doi.org/10.1103/PhysRevC.79.024321
23. Kolomietz V. M., Plujko V. A., Shlomo S. Collisional damping in heated nuclei within Landau-Vlasov kinetic equation. Phys. Rev. C 52 (1995) 2480. https://doi.org/10.1103/PhysRevC.52.2480
24. Kolomietz V. M., Plujko V. A., Shlomo S. Interplay between one-body and collisional damping of collective motion in nuclei. Phys. Rev. C 54 (1996) 3014. https://doi.org/10.1103/PhysRevC.54.3014
25. Di Toro M., Kolomietz V. M., Larionov A. B. Isovector vibrations in nuclear matter at finite temperature. Phys. Rev. C 59 (1999) 3099. https://doi.org/10.1103/PhysRevC.59.3099
26. Коломиец В. М., Константинов Б. Д., Струтинский В. М., Хворостьянов В. И. К теории оболочечной структуры ядер. ЭЧАЯ 3 (1972) 392.