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NON-MARKOVIAN  NUCLEAR  DYNAMICS 
 
A prove of equations of motion for the nuclear shape variables which establish a direct connection of the memory 

effects with the dynamic distortion of the Fermi surface is suggested. The equations of motion for the nuclear Fermi 
liquid drop are derived from the collisional kinetic equation. In general, the corresponding equations are non-
Markovian. The memory effects appear due to the Fermi surface distortions and depend on the relaxation time. The 
main purpose of the present work is to apply the non-Markovian dynamics to the description of the nuclear giant multi-
pole resonances (GMR) and the large amplitude motion. We take also into consideration the random forces and concen-
trate on the formation of both the conservative and the friction forces to make more clear the memory effect on the nuc-
lear dynamics. In this respect, the given approach represents an extension of the traditional liquid drop model (LDM) to 
the case of the nuclear Fermi liquid drop. In practical application, we pay close attention to the description of the des-
cent of the nucleus from the fission barrier to the scission point. 

Keywords: Fermi liquid, giant multipole resonances, nuclear fission, memory effects. 
 

1. Introduction 
 

The concept of macroscopic collective motion 
plays an important role in many phenomena in nuc-
lear physics, such as large scale motion, fission, 
heavy ion collision, etc. Usually these phenomena 
are treated in terms of only a few degrees of free-
dom, which are chosen to describe gross properties 
of the nucleus [1]. Such a kind of approach is ac-
ceptable for a slow collective motion where the fast 
intrinsic degrees of freedom exert forces on the col-
lective variables leading to a Markovian transport 
equation. An available approach to nuclear collec-
tive motion problems is still based on the standard 
liquid-drop model (LDM) [2, 3]. Up to now, the 
LDM and its extensions are widely used for the de-
scription of the main macroscopic, i.e., averaged 
over many quantum states, characteristics of nuclear 
fission [4, 5]. On the other hand, it is well known 

that the LDM is not able to describe some strongly 
collective nuclear excitations such as the giant mul-
tipole resonances (GMR) [6 - 8]. It is because the 
LDM ignores the important features of the nucleus 
as a Fermi liquid [7].  

 
1.1. Restoring forces in a Fermi liquid 

 
It is instructive to compare the properties of both 

the normal liquid drop and the Fermi liquid drop step 
by step. Such kind of comparison is presented in the 
Table. As seen from the Table, the static properties of 
both liquids are similar in every respect. Namely, 
both liquids are saturated ones, i.e., the binding ener-
gy E and the volume V are proportional to the particle 
number A. Moreover, the static (adiabatic) deforma-
tion energy defE  and the incompressibility coefficient 
K are the same in both liquids also. 

 

Comparison of static and dynamic properties of the normal liquid drop and the Fermi liquid drop. 
The static properties are very similar in both cases whereas the dynamic ones are significantly different 

 

Liquid drop Fermi liquid drop 
Saturation ,E A V A∼ ∼  Saturation ,E A V A∼ ∼  
Static (adiabatic) deformation energy def surf CE E E= +  Static (adiabatic) deformation energy def surf CE E E= +  

Static incompressibility 2 2 29 ( / ) /
eq

K E Aρ ρ= ∂ ∂  Static incompressibility 2 2 29 ( / ) /
eq

K E Aρ ρ= ∂ ∂  

Dynamis 
Pressure (scalar) P νρ∼  

Shape vibrations /C Bω =  
First sound 1 / 9c K m=  
Markovian transport equations 

Dynamis 
Pressure (tensor) Pνμ  

Giant resonances ( ) /FC C Bω = +  

Zero sound 0 3 / 9c K m≈  
Non-Markovian motion 

 
However the situation becomes completely dif-

ferent if we take a look at the dynamic behavior of 
both liquids. First of all, the pressure P, which is a 

scalar (power function) in a usual liquid, is trans-
formed into the pressure tensor Pνμ  in a Fermi  
liquid. In this sense, one can say that the Fermi  
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liquid is similar to the solid state. The origin of this 
phenomenon is the dynamical distortion of the Fermi 
surface in momentum space which accompanies the 
collective motion in a Fermi liquid. Due to this fact 
the stiffness coefficient C and the corresponding 
eigenfrequency ω of shape eigenvibrations are sig-
nificantly different in both liquids. In a Fermi liquid, 
the stiffness coefficient C is subsidized by an addi-
tional strong contribution FC  because of the above 
mentioned Fermi surface distortion effect. 

Secondly, the first sound which exists in a usual 
liquid is transformed to the zero sound in a Fermi 
liquid. The difference of both sound velocities 1c  
and 0c  is related to the dynamical renormalization of 
the incompressibility by factor of about 3.  

We will show below that the significant differ-
ence of both liquids exists also in the case of large 
amplitude motion, e.g. nuclear fission. In particular, 
the Fermi distortion effects lead to the non-
Markovian equations of motion and influence 
strongly the descent of the nucleus from the fission 
barrier [9]. 

 
1.2. Non-Markovian motion 

 
In general, the non-Markovian equations of mo-

tion imply the presence of memory effects. In the 
simplest case of one dimension system, such kind of 
non-Markovian equation reads 

 

0

2 ( )1 ( )( ) ( , ) ( )
2

t
pot

t

E qB qB q q q dt t t q t
q q

κ
∂∂ ′ ′ ′+ = − −

∂ ∂ ∫�� � � , 

(1.1) 
where ( )B q  is the mass parameter; ( )potE q  is the 
potential energy and ( , )t tκ ′  is the memory kernel. 
Typically the memory kernel is taken by the expo-
nential function as (see Refs. [10, 11]) 
 

( , ) ~ exp t tt tκ
τ
′ −⎛ ⎞′ ⎜ ⎟

⎝ ⎠
,                           (1.2) 

 

where τ  is the relaxation time. 
The non-Markovian equation of motion (1.1) 

leads to two important consequences: (i) In a short 
relaxation time limit ( 0τ → ), Eq. (1.2) is trans-
formed to the usual Markovian equation of motion 
with a friction 

 

2
1

( )1 ( )( ) ( ) ( 0),
2

potE qB qB q q q q q
q q

γ τ
∂∂

+ + = − →
∂ ∂

�� � �   

(1.3) 
where 1( )qγ  is the classical friction coefficient 
which is proportional to the relaxation time 
 

1( )qγ τ∼ . 

(ii) In an opposite limit of long relaxation time 
(τ →∞ ), the situation is significantly different.  
Assuming τ →∞ , we obtain from Eq. (1.1) the fol-
lowing Markovian equation 

 

2
0

( )1 ( )( ) ( ) ( ),
2

( ).

pot
F

E qB qB q q q q q C q
q q

γ

τ

∂∂
+ + = − +

∂ ∂
→∞

�� � �
  

(1.4) 
In this case, however, the friction coefficient 

0 ( )qγ  is inverse proportional to the relaxation time 
similarly to the quantum mechanical principle of 
uncertainty 

 

0
1( )qγ
τ
∼ . 

 
Moreover, the extremely important point is that the 
additional force ( )FC q  (additional to the main driv-
ing force ( ) /potE q q−∂ ∂ )  appears in this case. This 
fact provides a lot of new features for the nuclear 
collective dynamics which we will discuss below. 

 
2. Nuclear Fluid dynamics 

 
2.1. From quantum mechanics to kinetic theory 
 
The first question is: what is the relation of above 

mentioned features of Fermi liquid to the nuclear 
collective dynamics? In contrast to the microscopic 
approaches like the quantum time dependent  
Hartree - Fock (TDHF) approximation and its mod-
ifications [12], we will reduce the quantum equa-
tions of motion to the macroscopic ones for the col-
lective variables. Probably, the best way to derive 
the corresponding macroscopic equations of motion 
is following, see Refs. [13 - 15]. Starting from a 
general quantum many-body system and performing 
the Wigner transform [16, 17], one can reduce the 
many body wave function ({ }, )ir tΨ

G  to the distribu-
tion function ( , ; )f r p tG G  in phase space ( , )r pG G :  

 
({ }, ) ( , ; ) ( , ; )ir t r r t f r p tρ ′Ψ ⇒ ⇒
G G G G G , 

 

where ( , ; )r r tρ ′  is the one body density matrix. 
The many body Shrödinger equation is then trans-
formed identically to the kinetic equation of the fol-
lowing form 
 

1
r r p

ff p f U f
t m

δ ξ
τ

∂
+ ⋅∇ −∇ ⋅∇ = − +

∂

G G GG ,    (2.1) 
 

where U  is the selfconsistent mean field and ξ  is 
the random force (this last one appears because of  
the interparticle correlations, the thermal fluctua-
tions, etc.).  
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There are at least two advantages of the kinetic 
equation (2.1): (i) In contrast to the basic quantum 
Shrödinger equation, the kinetic equation (2.1) in-
corporates the damping effects because of the  
relaxation time τ . Note that within the quantum  
approach such kind of consideration can not be 
achieved directly because of Hermitian form of a 
quantum many-body Hamiltonian. (ii) The kinetic 
equation (2.1) can be easily generalized to the case 
of finite temperature T. Note also that the ensemble 
smearing and thereby conception of temperature can 
not be implanted into the quantum equations of mo-
tion in principle. Unfortunately a direct solution of 
the kinetic equation (1.1) is a hard problem and can 
be performed in some simplest cases only [18, 19]. 

 
2.2. Local equations of motion 

 
Additional advantage of kinetic approach is the 

possibility to derive the macroscopic equations of 
motion directly starting from Eq. (2.1). One of such 
kind example gives the transition from Eq. (2.1) to 
the equations of motion for the local observable  
values of particle density, velocity field, pressure, 
etc. Taking the first three moments in pG -space from 
the kinetic Eq. (2.1), one can obtain 

 

potm u P
t ν ν ν

δε
ρ

δρ
∂

+∇ +∇ =
∂

 

 

0

exp ( ) ( ) ,
t

t

t tdt P t tμ νμ νξτ
′ −⎛ ⎞′ ′ ′= −∇ Λ +∇⎜ ⎟

⎝ ⎠∫    (2.2) 

 
where ρ  is the particle density, uν  is the velocity 
field 
 

3

1
(2 )

dp pu f
m
ν

ν δ
ρ π

= ∫
G

=
, 

 
P is the quantum pressure 
 

5/32
3 kinP ε ρ= ∼ , 

 

potε  is the potential energy density, kinε  is the kine-
tic energy density and the memory tensor νμΛ  is 
given by 
 

2
3

u u uνμ ν μ μ νΛ = ∇ +∇ − ∇⋅
G G .              (2.3) 

 
The integral (so called memory integral) on the 

right hand side of Eq. (2.2) and the memory tensor 
(2.3) itself occur due to the Fermi distortion effect. 
This effect influences the nuclear dynamics extreme-

ly strongly. We will demonstrate several examples 
which are related to the nuclear giant multipole re-
sonances (GMR) and to the nuclear fission.   

 
3. Giant multipole resonances 

 
3.1. Shape vibrations 

 
An instructive example of the influence of the 

memory and the Fermi surface distortion effects on 
the nuclear dynamics represents the nuclear shape 
vibrations (capillary waves). In Fig. 1, we show the 
energy of the isoscalar 2+

 collective excitations 
which exhaust about of 100 % sum rules. 

 
      

2
ω += , MeV 

 
                                                         Mass Number A 
Fig. 1. Dependence of the energy 

2
ω +=  of strong collec-

tivized isoscalar 2+  excitations on the mass number A. 
The dashed line is for the liquid drop model (LDM) and 
the solid line is for the Fermi liquid drop model (FLDM) 
where the Fermi surface distortion effects are taken into 
account. 

 
The traditional liquid drop model of incompress-

ible liquid predicts the energy behavior 
1/2

2
25 MeVAω +

−≈ ⋅=  [3, 12] (dashed line in Fig. 1) 
which contradicts the experimental data for the 
strongly collectivized (which exhaust about 100 % 
of sum rules) 2+ excitations. Taking into account the 
Fermi surface distortion effects and solving Eq. (2.1) 
we obtain the completely different A-dependency 
(solid FLDM line in Fig. 1) and the significantly 
higher energy 1/3

2
64 MeVAω +

−≈ ⋅=  which is in a very 
good agreement with experimental data.  

The origin of this phenomenon can be easily un-
derstood if we take into consideration the following 
circumstance. In the Fermi liquid drop, the deforma-
tion of the surface or the distortion of the particle 
density in r -space lead to the distortion of the Fer-
mi surface in pG -space for each r -point of the nuc-
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leus. The distortion of the Fermi surface needs an 
additional potential energy and thereby leads to a 
shift up of the eigenenergy of the eigenvibrations. 
Note also that the motion in both the rG -space and 
the pG -space is consistent due to the relaxation time. 
Namely, on the distorted Fermi surface the interpar-
ticle collisions become possible and produce the 
two-body relaxation and the damping [20]. That 
leads to the damping in the basic motion in rG -space.  

Moreover the Fermi surface distortion provides 
an anisotropy of the pressure tensor and increases 
significantly the stiffness of the nuclear surface. 

 
3.2. Compression modes 

 
Nuclear Fermi liquid is compressible. The in-

compressibility coefficient K determines the zero 
sound velocity 0c  and the corresponding eigenfre-
quencies of compression (breathing) eigenvibrations. 
Actually, at present one has the reliable experimen-
tal information about two kinds of compression 
modes, namely, the giant monopole 0+  resonance 
and the isoscalar giant dipole 1−  resonance. The  
eigenenergies of both modes depend on the incom-
pressibility coefficient K and this fact is usually used 
for the experimental determination of the nuclear 
incompressibility coefficient K.  

However one has to be careful with such kind of 
determination of K. In a classical (not nuclear)  
liquid, we have usually a short relaxation time re-
gime 1ωτ �  and the eigenenergy of compression 
mode is given by 

 

0
, , 1

9
K k k
m R

πω ωτ+ = ≈= = � ,       (3.1) 
 

where k is the wave number. Thus, we have a direct 
relation between the eigenenergy and the stiffness 
coefficient K.  

In contrast to this case, in a nuclear Fermi liquid 
(i.e., for long relaxation time regime 1ωτ � ) we 
have the completely different relation between both 
the eigenfrequency 

0
ω +  and the incompressibility K . 

Namely, 
 

0

3 , , 1
9 3

K k k
m R

πω ωτ+

⋅
≈ ≈

⋅
= = � .      (3.2) 

 

Fortunately, there is a nice compensation of the re-
normalization factor 3≈  at the incompressibility 
(the value of 3 K  in Eq. (3.2) instead of K  in 
Eq. (3.1)) due to the reducing of the wave number k  
and the final result for 

0
ω +=  is similar to the normal 

liquid given by Eq. (3.1).  
An important point is that such kind of compen-

sation of the incompressibility growth exists for the 

main tone only but not for the overtones. In this re-
spect, it is interesting to consider the isoscalar giant 
dipole resonance which is the overtone to the spu-
rious 1−  main tone. (The spurious 1−  main tone 
represents the translation of the nucleus as the whole 
with zero’s excitation energy.) In Fig. 2 we show the 
ratio of the energy centroids for the isoscalar E0 and 
E1 giant resonances [21].  

 

    E1/E0 

 
                                                                                     A 

Fig. 2. Dependence of the energy ratio E1/E0 on the nuc-
lear mass number A. The ratio of the LDM is obtained 
within the framework of a standard liquid drop model. 
The solid lines 1 and 2 are obtained from Fermi liquid 
drop model for τ →∞  (solid line 1) and for realistic re-
laxation time 238 10 sτ −= ⋅  (solid line 2). The ratio 
HF-RPA (dashed line) is from fully self-consistent RPA 
calculations. 
 

In agreement with the above mentioned compen-
sation effect, the dipole compression mode should 
be additionally shifted up with respect to the mono-
pole one. This fact is reflected in Fig. 2 where the 
curve 1 (pure Fermi liquid calculation without 
damping, i.e., for τ →∞ ) is strongly shifted up with 
respect to the liquid drop model calculations (solid 
line LDM). Note that the quantum RPA calculations, 
where the damping effects are neglected, give the 
shift up for the ratio E1/E0 also. A good agreement 
with experimental data is obtained within the Fermi 
liquid approach if the relaxation (damping effect) is 
taken into account (see solid line 2 in Fig. 2). 

 
3.3. Isovector mode 

 
Fermi liquid approach can be also applied to the 

isovector excitations where the proton and neutron 
liquids are shifted in opposite directions. The resto-
ring force is determined here by the symmetry energy 

 
1/3

, , , ( )sym sym vol sym surf sym Fb b b A b A−= + + ,        (3.3) 
 

where ,sym volb  and ,sym surfb  are the volume and surface 
contributions to the symmetry energy, and , ( )sym Fb A  
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is the contribution from the Fermi surface distortion. 
As above mentioned, the Fermi liquid has some fea-
tures of the solid state because of the Fermi surface 
distortion effects. Due to this fact, the isovector 
mode in a nuclear Fermi liquid represents a combi-
nation of both the Steinwedel - Jensen mode and 
Goldhaber - Teller one. This peculiarity of the Fermi 
liquid approach provides a good description of A-
dependency for the light and heavy nuclei simulta-
neously [22]. It is shown in Fig. 3. 

 
 E · A1/3, MeV 

 
                                                                                     A 
Fig. 3. Dependence of the energy of isovector dipole giant 
resonance on the mass number A: the dashed line is the 
calculation which includes the Fermi surface deformation 
up to a quadrupole one (scaling approximation); the solid 
line was obtained within Fermi liquid model without re-
strictions on the multipolarity of the Fermi surface distor-
tions; the solid straight line is the traditional LDM result 

1/380 MeVE A−≈ ⋅  [3]. 
 

The Fermi liquid approach allows one to repro-
duce the A-dependency of the enhancement factor 
for so-called model-independent sum rule 1m . Note 
that in contrast to the isoscalar dipole mode where 
the sum 1m  is really model-independent, the value 
of 1m  is actually model-dependent for the isovector 
dipole excitations. The energy weighted sum 1m  is 
related to the photoabsorption cross-section ( )absσ ω  
of γ-quanta as following [22] 

 

[ ]
2 2

1
0

2( ) ( ) 1 ( )abs
e NZm d A

mc A
πω σ ω κ

∞

= = +∫
== , 

 
where 1 ( )Aκ+  is the enhancement factor with re-
spect to the classical Thomas - Reiche - Khun (TRK) 
sum rule. In the isoscalar case, the enhancement fac-
tor is absent and ( ) 0Aκ = , i.e., 1m  sum rule is really 
model independent. In contrast to that, in the isovec-
tor case, one has ( ) 0Aκ ≠ . The origin of non-zero 
value of ( ) 0Aκ ≠  is the velocity dependency of the 

inter-nucleon interaction and the fact that the nucle-
on effective mass in the isovector channel is differ-
ent than the one for the isoscalar excitations. 

The enhancement factor 1 ( )Aκ+  for the isovec-
tor giant dipole resonances is shown in Fig. 4. 

 

1 ( )Aκ+

 
                                                                                     A 
Fig. 4. Dependence of the enhancement factor 1 ( )Aκ+  
for the isovector dipole giant resonance on the mass num-
ber A obtained within Fermi liquid approach (solid line). 
The dashed line is the microscopic RPA calculations with 
Skyrme forces. The solid points are the experimental data 
of the Livermore group.
 

An extraction of A-dependency of  the enhance-
ment factor 1 ( )Aκ+  from the experimental data is 
not a simple problem. The experimental data has no 
a good accuracy yet. Note that the standard RPA 
calculations overestimate the enhancement factor 
and the Fermi liquid results of Fig. 4 are more ap-
propriate. 

 
4. Large amplitude motion 

 
As it was mentioned in Sect. 3, the collective mo-

tion of the nuclear Fermi liquid is accompanied by 
the dynamical distortion of the Fermi surface and the 
collective potential energy potE  is subsidized by an 
additional contribution, ,pot FE  because of the  
dynamic Fermi surface deformation. The energy 

,pot FE  is a smooth quantity (in sense of the quantum 
shell oscillations) and it can not be recovered taking 
into consideration the quantum shell corrections to 
the adiabatic (static) potential energy deformation. 
This fact creates the following problem.  

The LDM deformation energy defE�  has a mini-
mum for a sphere, i.e., for 0q = . The total deforma-
tion energy 
 

( ) ( ) ( )def defE q E q U qδ= +�                  (4.1) 
 

includes both the smooth part defE�  and the irregular 
shell correction ( )U qδ  [26]. The shell correction 

( )U qδ  provides two effects: a shift of the ground 
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state to values of 0q ≠  and an appearance of the 
second minimum in ( )defE q  (super-deformation). 
Note, however, that the practical calculations of the 
deformation energy ( )defE q  assumes always the 
presence of the external cranking field which disap-
pears in the stationary points of minima and maxima 
of energy ( )defE q  only. Both the shell correction 
method and the constrained Hartree – Fock appro-
ximation are not free from this inconvenience. The 
behavior of deformation energy ( )defE q  between the 
stationary points where ( ) / 0defE q q∂ ∂ =  is still a 
puzzle which has no solution yet. Another problem 
occurs on the distant right slope of curve ( )defE q , 
i.e., in the case of the descent of the nucleus from 
the barrier to the scission point. 

Considering the nuclear shape deformation near 
the LDM ground state at 0q = , we saw earlier (see 
Fig. 1) the strong increase of the surface stiffness 
coefficient due to the Fermi surface distortion effect 
and the corresponding shift of the energy of the sur-
face eigenvibrations from the region of 1 2 MeV÷  to 
10 15MeV÷ . On the right slope of the fission bar-
rier one can also expect that the same dynamical 
Fermi surface distortion effects should influence the 
descent of the nucleus from the fission barrier. The 
following problem can occur in this case. If the de-
formation energy defE  is given by Eq. (4.1), then the 

question is how the smooth energy defE�  looks like. 
Does this smooth energy equal to the adiabatic liq-
uid drop energy or to the energy of the Fermi liquid 
drop which includes the additional contribution from 
the Fermi surface distortion effect? 

To answer this question we have to derive the 
equations of motion for the shape variables which 
can be applied to the large amplitude motion.  
Assuming the incompressible nuclear Fermi liquid 
and reducing the above established non-Markovian 
local equations of motion (2.2) for the velocity field, 
one can obtain the following quite general macros-
copic equations of motion [9 - 11] 

 

1 1

( )1( )
2

N N
ij

ij j j k
j k k

B q
B q q q q

q= =

∂⎡ ⎤
+ +⎢ ⎥∂⎣ ⎦

∑ ∑�� � �  

 

0
1

( )
exp ( , ) ( ) ( ),

tN
pot

ij j i
j it

E qt tdt t t q t t
q

κ ξ
τ=

∂′ −⎛ ⎞′ ′ ′+ = − +⎜ ⎟ ∂⎝ ⎠
∑∫

�
�

(4.2) 
 

where ( , )ij t tκ ′  is the memory tensor and ( )i tξ  is the 
random force which satisfies the following property 
for the ensemble smearing 

( ) 0, ( ) ( ) expi i j ij

t t
t t t Tξ ξ ξ δ

τ
′−⎛ ⎞

′= −⎜ ⎟
⎝ ⎠

∼ , 

(4.3) 
where ...  means the ensemble smearing. 

The non-Markovian Langeven Eqs. (4.2) can be 
solved directly. The mass tensor ( )ijB q  is usually 
evaluated taking into account the vortex motion also. 
The driving force ( ) /pot iE q q−∂ ∂�  can be taken from 
the liquid drop model. A new element in Eq. (4.2) is 
the memory integral which provides the contribution 
to both the conservative (elastic), , ( , )i consF q t , and 
the dissipative (friction), , ( , )i disF q t , forces 

 

0
1

exp ( , ) ( )
tN

ij j
j t

t tdt t t q tκ
τ=

′ −⎛ ⎞′ ′ ′ =⎜ ⎟
⎝ ⎠

∑∫ �  

 

, ,( , ) ( , )i cons i disF q t F q t= + .                  (4.4) 
 

It can be shown that the conservative time-
reversible elastic force , ( , )i consF q t  acts against the 
driving force ( ) /pot iE q q−∂ ∂�  always. That creates 
the effect of a hindrance to the fission for the des-
cent from the fission barrier to the scission point. 
This effect depends on both the collective velocity 
and the relaxation time. In the case of slow motion 
the hindrance is absent similarly to the first sound 
regime for small amplitude vibrations. The hin-
drance effect grows if the collective velocity is 
growing. Due to this peculiarity, the velocity of des-
cent goes down, i.e., the hindrance effect becomes 
weaker and the nucleus starts to accelerate again, 
etc. Such kind of change of the hindrance effect 
along the descent trajectory leads to the characteris-
tic shape oscillations which accompany the descent 
of the nucleus from the fission barrier [9]. 

 
4.1. Descent from the fission barrier 

 
We will apply the non-Markovian approach to 

the symmetric nuclear fission in two dimension case. 
The shape of the fissionable nucleus is derived by 
the rotation of the profile function ( ;{ ( )})iY z q t  in 
the following form 

 
2 2 2 2

0 2
0 2

( )( )( ,{ ( )}) ( ; , )i
z zY z q t Y z

Q
ζ ζζ ζ − +

≡ = ,  

(4.5) 
where the multiplier Q guarantees the volume con-
servation, 
 

( )3 2 2
0 0 2

3
0

/ 5
Q

R
ζ ζ ζ+

= − . 
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Here, all quantities of the length dimension are 
expressed in the 0R  units. The parameter 0ζ  deter-
mines the general elongation of the figure and 2ζ  is 
related to the radius of the neck. For 2ζ  = ∞, the 
shapes coincide with the spheroidal ones. At finite 

2ζ  ( 2ζ  > 0 for bound figures) the neck appears and 
the value 2ζ  = 0 corresponds to the scission point 
after which the figure is divided in the two parts for 

2ζ  < 0.  
To make the discussion more clear we compare 

both the non-Markovian (Fermi liquid drop model) 
and the Markovian (traditional liquid drop model) 
results. For a moment, we restrict ourselves by the 
one dimension case. The Markovian limit is  
obtained from Eq. (4.2) for 0τ →  and reads 

 

2 ( )1 ( )( ) ( )
2

potE qB qB q q q q q
q q

γ
∂∂

+ = − −
∂ ∂

�
�� � � ,      (4.6) 

 
where ( )qγ  is the friction coefficient 

 

2 3
0 0 0 02

4, / , .
1 ( ) 5

F
F F F

F

B B p R
m

ω τγ ω ω κ κ πρ
ω τ

= = =
+  

(4.7) 
 
The numerical calculations of Ref. [9] for the one 

dimension motion (descent from barrier) near the 
saddle point shows two consequences of the memory 
effect (Fermi surface distortion effect): (i) The des-
cent is strongly hindered due to the Fermi surface 
distortion effect, (ii) The memory effects lead to the 
characteristic oscillations of nuclear shape. The time 
dependency of shape parameter is then given by 

 
/2( ) sin( / )t tq t C e A e Etζ

ζ ω
−ΓΔ = + += =  

 
/2 cos( / )tB e Etω

−Γ+ = = ,                     (4.8) 
 
where ζ  is the instability growth rate, /E =  is the 
characteristic eigenfrequency and Γ  is the damping 
width. All these values depend on the relaxation 
time τ . For realistic value of the relaxation time 

238 10 sτ −≈ ⋅ , we can expect the accompanied cha-
racteristic oscillations with the eigenenergy 

6 7MeV.E ≈ ÷  That is quite below a typical energy 
of giant resonances and exceeds the energy of ther-
mal gamma-quanta. The intriguing problem is to 
study experimentally the corresponding gamma-
quanta emission which accompanies the descent of 
the nucleus from the fission barrier (pre-scission 
γ-quanta). 

The profile function of Eq. (4.5) provides the 
descent of the nucleus in two-dimension space of 

shape variables: 1 2 0 2{ , } { , }q q q ζ ζ= = . The fission 
point is derived by the condition of the disappear-
ance of the restoring force with respect to neck ra-
dius. The corresponding condition reads  

 
2

2
2

( )
0potE q

ζ
∂

=
∂

.                               (4.9) 

 
The separation of fissionable nucleus in two frag-
ments happens in the crossing point of both the tra-
jectory (obtained from Eq. (4.2)) and the scission 
line (obtained from Eq. (4.9)). In the long relaxation 
time regime, the memory effects hinder strongly the 
descent of the nucleus from the fission barrier with 
respect to the usual liquid drop model with friction. 
For the realistic relaxation time 238 10 sτ −≈ ⋅  [23 - 
25] one has a factor about of 2 for the hindrance  
effect [9]. This hindrance is because of the Fermi 
distortion effect. The Fermi distortions produce, as it 
was above mentioned, the conservative (elastic) 
force which works against the usual driving force 
occurred on the adiabatic fission barrier.  

This fact is extremely important for understand-
ing of the energy balance at the scission point and 
the yield of the kinetic energy of the fission frag-
ments. The most probable total kinetic energy (TKE) 
of fission fragments is given by 

 

,kin Coul kin psE E E= + ,                      (4.10) 
 

where CoulE  is the repulsive Coulomb energy at the 
scission point and ,kin psE  is the pre-scission kinetic 
energy. The energy kinE  depends on the redistribu-
tion of the potential energy, potEΔ , which is released 
from the fission barrier among different components. 
Namely, the following energy balance exists at  
fission point 
 

, ,pot kin ps dis F psE E E EΔ = + + ,             (4.11) 
 

where dissE  is the dissipation energy and ,F psE  is the 
energy which is collected (at scission point) as the 
potential energy due to the Fermi surface deforma-
tion. In contrast to dissipation energy dissE , the po-
tential energy ,F psE  is time reversible, i.e., it is not 
transformed to the heat. The balance of energies is 
illustrated in Fig. 5. 

It is seen from Fig. 5 that the presence of memory 
effects (solid line) leads to a decrease of the pre-
scission kinetic energy. This is because a significant 
part of the potential energy potEΔ  at the scission 
point is collected as the energy of the Fermi surface 
deformation. Due to this fact, the nucleus loses a  
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     kinE , CoulE , MeV 

 
                                                                 τ, 10-23 s 
Fig. 5. Fission-fragment kinetic energy, kinE , and the 
Coulomb repulsive energy at the scission point, CoulE , 
versus the relaxation time τ for the nucleus 236U . The 
solid lines represent the result of the calculation in pres-
ence of the memory effects and the dashed lines are for 
the case of Markovian (no memory) motion with the 
friction forces. 
 
part of the pre-scission kinetic energy converting it 
into the potential energy of the Fermi surface distor-
tion instead of the time-irreversible heating of the 
nucleus. A good agreement with the experimental 
value for the TKE is obtained for a moderate value 
of the relaxation time 238 10 sτ −≈ ⋅ . Note that to 
achieve such kind of result within the traditional  
liquid drop model the over-damped motion for the 
descent from the fission barrier is usually assumed. 
 

totE , MeV 

 
                                                                               2 1/3/Z A  
Fig. 6. The most probable total kinetic energy (TKE) totE  
of fission versus the fission parameter 2 1/3/Z A  within the 
Fermi liquid drop model for the relaxation time 

238 10 sτ −= ⋅ . 

The agreement of the non-Markovian calcula-
tions of the TKE in actinide nuclei with experimen-
tal data is shown in Fig. 6. All numerical calcula-
tions were here performed for the relaxation time 

238 10 sτ −≈ ⋅  which corresponds to the moderate 
friction (damping) in fissionable nucleus.  

That is important from point of view of consis-
tency of theory. In particular, using the same value 
of the relaxation time 238 10 sτ −= ⋅  we have to be 
able to reproduce the widths of the giant multipole 
resonances. 

 
            Γ, MeV 

 
                                                                              A 
Fig. 7. The collisional width of the giant quadrupole 
resonance within the Fermi-liquid drop model for the 
relaxation time 238 10 sτ −= ⋅  (solid line). 

 
This possibility is demonstrated in Fig. 7 for the 

isoscalar giant quadrupole resonances. We point out 
that the use of the friction coefficient obtained from 
a fit of the TKE to the experimental data within the 
traditional (not Fermi-liquid) liquid drop model 
leads to a significant overestimate of the widths of 
the giant multipole resonances.   

 
5. Conclusions 

 
The collective motion of the nuclear Fermi liquid 

is accompanied by the dynamical distortion of the 
Fermi surface. In general, the corresponding ma-
croscopic equations of motion are non-Markovian 
and contain the memory integral which is caused by 
the Fermi surface distortions and depends on the 
relaxation time τ. The memory effects on the nuclear 
collective motion disappear in two limits: at zero 
relaxation time, τ → 0, and at τ → ∞. The memory 
integral contains the contribution from both the time 
reversible elastic force and the dissipative friction 
force. 

The eigenmotion near the ground state of the 
nuclear Fermi-liquid drop is influenced by the mem-
ory effects through both the additional contribution 
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to the stiffness, FC , and to the friction coefficient γ. 
In the rare collision limit of τ → ∞, the additional 
contribution (elastic force) appears due to the memo-
ry integral. The contribution from the elastic force is 
significantly stronger than the one caused by the 
adiabatic driving force. The presence of the elastic 
force provides a correct A-dependence of the energy 
of the giant multipole resonances. 

The development of instability near the fission 
barrier is strongly influenced by the memory effects 
if the relaxation time τ is large enough. In such a 
case, a drift of the nucleus from the barrier to the 
scission point is accompanied by characteristic 
shape oscillations which depend on the memory ker-
nel and on the relaxation time τ. The shape oscilla-
tions appear due to the elastic force induced by the 
memory integral. The elastic force acts against the 
adiabatic force - ( ) /potE q q∂ ∂  and hinders the motion 
to the scission point. In contrast to the case of the 
Markovian motion, the delay in the fission is caused 
here by the conservative elastic force but not only by 
the friction force. Due to this fact, the nucleus loses 
a part of the pre-scission kinetic energy converting it 
into the potential energy of the Fermi surface distor-
tion instead of the time-irreversible heating of the 

nucleus. In contrast to the Markovian motion, the 
memory effects provide a monotonous dependence 
of the saddle-to-scission time on the relaxation time 
τ. This is caused by the elastic forces produced by 
the memory integral, which lead to the additional 
hindrance effect for the descent from the barrier at 
large τ. 

The memory effects lead to the decrease of the 
fission-fragment kinetic energy, kinE , with respect to 
the one obtained from the Markovian motion with 
friction. This is because a significant part of the po-
tential energy at the scission point is collected as the 
energy of the Fermi surface deformation. Note that 
the decrease of the fission-fragment kinetic energy 
due to the memory effects is enhanced in the rare 
collision regime (at larger relaxation time) while the 
effect due to friction decreases.  

We pointed out also that the Fermi liquid drop 
model provides a consistent description of the dissi-
pation processes in completely different fields of 
nuclear dynamics. Namely, both the kinetic energy 
fission fragments and the widths of giant multipole 
resonances can be described assuming the same val-
ue of the collisional relaxation time.  
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НЕ-МАРКІВСЬКА  ЯДЕРНА  ДИНАМІКА 

 
Пропонуються  рівняння руху для параметрів форми ядра, що встановлюють прямий зв’язок ефектів пам’яті з 

динамічним збуренням поверхні Фермі. Рівняня руху для краплини ядерної фермі-рідини отримуються з викорис-
танням зіштовхувального кінетичного рівняння. У загальному випадку отримані рівняння є  
не-марківськими. Ефекти пам’яті пов’язані тут із збуренням поверхні Фермі і залежать від часу релаксації. Голов-
на мета роботи полягає в застосуванні не-марківської динаміки до опису ядерних мультипольних гігантських  
резонансів і колективного руху з великою амплітудою. Ми беремо до уваги також дію випадкових сил і концент-
руємось на формуванні консервативних і дисипативних сил при колективному русі, що дає змогу більш чітко ви-
явити вплив ефектів пам’яті на ядерну динаміку. У цьому відношенні запропонований підхід являє собою уза-
гальнення традиційної моделі рідкої краплі на випадок краплини ядерної фермі-рідини. При практичному засто-
суванні ми приділяємо особливу увагу опису спуску ядра з бар’єра поділу до точки розриву. 

Ключові слова: фермі-рідина, мультипольні гігантські резонанси, ядерний поділ, ефекти пам’яті.  
 

В. М. Коломиец 
 

НЕ-МАРКОВСКАЯ  ЯДЕРНАЯ  ДИНАМИКА 
 

Предлагаются уравнения движения для параметров формы ядра, которые устанавливают прямую связь эф-
фектов памяти с динамическим искажением поверхности Ферми. Уравнения движения капли ядерной ферми-
жидкости получаются из столкновительного кинетического уравнения. В общем случае полученные уравнения 
есть не-марковскими. Эффекты памяти связаны здесь с искажением поверхности Ферми и зависят от времени 
релаксации. Основная цель работы состоит в применении не-марковской динамики к описанию ядерных муль-
типольных гигантских резонансов и коллективного движения с большой амплитудой. Мы учитываем также 
действие случайных сил и сосредоточиваемся на формировании консервативных и диссипативных сил в про-
цессе коллективного движения, что позволяет более четко выявить влияние эффектов памяти на ядерную дина-
мику. В этом отношении предложенный подход является обобщением традиционной модели жидкой капли на 
случай капли ядерной ферми-жидкости. При практическом применении мы уделяем особое внимание описанию 
спуска ядра с барьера деления до точки разрыва. 

Ключевые слова: ферми-жидкость, мультипольные гигантские резонансы, ядерное деление, эффекты памяти.  
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