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NON-MARKOVIAN NUCLEAR DYNAMICS

A prove of equations of motion for the nuclear shape variables which establish a direct connection of the memory
effects with the dynamic distortion of the Fermi surface is suggested. The equations of motion for the nuclear Fermi
liquid drop are derived from the collisional kinetic equation. In general, the corresponding equations are non-
Markovian. The memory effects appear due to the Fermi surface distortions and depend on the relaxation time. The
main purpose of the present work is to apply the non-Markovian dynamics to the description of the nuclear giant multi-
pole resonances (GMR) and the large amplitude motion. We take also into consideration the random forces and concen-
trate on the formation of both the conservative and the friction forces to make more clear the memory effect on the nuc-
lear dynamics. In this respect, the given approach represents an extension of the traditional liquid drop model (LDM) to
the case of the nuclear Fermi liquid drop. In practical application, we pay close attention to the description of the des-
cent of the nucleus from the fission barrier to the scission point.
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1. Introduction

The concept of macroscopic collective motion
plays an important role in many phenomena in nuc-
lear physics, such as large scale motion, fission,
heavy ion collision, etc. Usually these phenomena
are treated in terms of only a few degrees of free-
dom, which are chosen to describe gross properties
of the nucleus [1]. Such a kind of approach is ac-
ceptable for a slow collective motion where the fast
intrinsic degrees of freedom exert forces on the col-
lective variables leading to a Markovian transport
equation. An available approach to nuclear collec-
tive motion problems is still based on the standard
liquid-drop model (LDM) [2, 3]. Up to now, the
LDM and its extensions are widely used for the de-
scription of the main macroscopic, i.e., averaged
over many quantum states, characteristics of nuclear
fission [4, 5]. On the other hand, it is well known

that the LDM is not able to describe some strongly
collective nuclear excitations such as the giant mul-
tipole resonances (GMR) [6 - 8]. It is because the
LDM ignores the important features of the nucleus
as a Fermi liquid [7].

1.1. Restoring forces in a Fermi liquid

It is instructive to compare the properties of both
the normal liquid drop and the Fermi liquid drop step
by step. Such kind of comparison is presented in the
Table. As seen from the Table, the static properties of
both liquids are similar in every respect. Namely,
both liquids are saturated ones, i.e., the binding ener-
gy E and the volume V" are proportional to the particle
number 4. Moreover, the static (adiabatic) deforma-

tion energy Edef' and the incompressibility coefficient

K are the same in both liquids also.

Comparison of static and dynamic properties of the normal liquid drop and the Fermi liquid drop.
The static properties are very similar in both cases whereas the dynamic ones are significantly different

Liquid drop

Fermi liquid drop

Saturation £~ A4, V ~ A

Saturation £~ A4, V ~A4

+F

Static (adiabatic) deformation energy £, = E c

surf

+F

Static (adiabatic) deformation energy £, = E c

surf

Static incompressibility K =9 p°0*>(E/ A)/dp®

eq

Static incompressibility K =9 p*0*(E / A)/6p2|
eq

Dynamis
Pressure (scalar) P ~ p"

Shape vibrations @ =~/C/ B
First sound ¢, =V K /9m

Markovian transport equations

Dynamis
Pressure (tensor) £,

Giant resonances @ =,/(C+C,)/B
Zero sound ¢, = V3K /9m

Non-Markovian motion

However the situation becomes completely dif-

ferent if we take a look at the dynamic behavior of

both liquids. First of all, the pressure P, which is a

scalar (power function) in a usual liquid, is trans-

formed into the pressure tensor P,, in a Fermi

7
liquid. In this sense, one can say that the Fermi

© V. M. Kolomietz, 2011

325




V.M. KOLOMIETZ

liquid is similar to the solid state. The origin of this
phenomenon is the dynamical distortion of the Fermi
surface in momentum space which accompanies the
collective motion in a Fermi liquid. Due to this fact
the stiffness coefficient C and the corresponding
eigenfrequency o of shape eigenvibrations are sig-
nificantly different in both liquids. In a Fermi liquid,
the stiffness coefficient C is subsidized by an addi-
tional strong contribution C, because of the above

mentioned Fermi surface distortion effect.
Secondly, the first sound which exists in a usual
liquid is transformed to the zero sound in a Fermi

liquid. The difference of both sound velocities ¢,

and c, is related to the dynamical renormalization of

the incompressibility by factor of about 3.

We will show below that the significant differ-
ence of both liquids exists also in the case of large
amplitude motion, e.g. nuclear fission. In particular,
the Fermi distortion effects lead to the non-
Markovian equations of motion and influence
strongly the descent of the nucleus from the fission
barrier [9].

1.2. Non-Markovian motion

In general, the non-Markovian equations of mo-
tion imply the presence of memory effects. In the
simplest case of one dimension system, such kind of
non-Markovian equation reads

10B(q) .o _ aEW(q)

2 oq

B(q)j+ j di'k (8,041,

(1.1)
where B(g) is the mass parameter; £, (q) is the
potential energy and «(z,t') is the memory kernel.

Typically the memory kernel is taken by the expo-
nential function as (see Refs. [10, 11])

K(t,1) ~ exp(ﬂj,
T

where 7 is the relaxation time.

The non-Markovian equation of motion (1.1)
leads to two important consequences: (i) In a short
relaxation time limit (7 —0), Eq. (1.2) is trans-
formed to the usual Markovian equation of motion
with a friction

0B(q) 2
aq

(1.2)

oF,,.(q)

B(gq)q +2 o0

+7(9)g =~ (r—>0),

(1.3)

where y,(¢) is the classical friction coefficient
which is proportional to the relaxation time

n(@~z.
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(i1) In an opposite limit of long relaxation time
(7 —>o0), the situation is significantly different.
Assuming 7 — o, we obtain from Eq. (1.1) the fol-
lowing Markovian equation

B, 3F,0)

B()+

2 0()__

+ CF(Q)&

(7 > ).
(1.4)
In this case, however, the friction coefficient
7,(q) is inverse proportional to the relaxation time

similarly to the quantum mechanical principle of
uncertainty

70(61)~l-
T

Moreover, the extremely important point is that the
additional force C,.(¢q) (additional to the main driv-

ing force — (q)/0q) appears in this case. This

pot
fact pr0V1des a lot of new features for the nuclear
collective dynamics which we will discuss below.

2. Nuclear Fluid dynamics
2.1. From quantum mechanics to Kinetic theory

The first question is: what is the relation of above
mentioned features of Fermi liquid to the nuclear
collective dynamics? In contrast to the microscopic
approaches like the quantum time dependent
Hartree - Fock (TDHF) approximation and its mod-
ifications [12], we will reduce the quantum equa-
tions of motion to the macroscopic ones for the col-
lective variables. Probably, the best way to derive
the corresponding macroscopic equations of motion
is following, see Refs. [13 - 15]. Starting from a
general quantum many-body system and performing
the Wigner transform [16, 17], one can reduce the
many body wave function ({7}, ) to the distribu-

tion function f(¥, p;t) in phase space (¥, p):
Y({rh, 0 = p(r i = f(Fp1),

where p(7,7;t) is the one body density matrix.
The many body Shrédinger equation is then trans-

formed identically to the kinetic equation of the fol-
lowing form

V. f=-VU-V, f=- f+§ 2.1

0 1.

J— +_

ot s m P
where U is the selfconsistent mean field and & is
the random force (this last one appears because of
the interparticle correlations, the thermal fluctua-
tions, etc.).
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There are at least two advantages of the kinetic
equation (2.1): (i) In contrast to the basic quantum
Shrédinger equation, the kinetic equation (2.1) in-
corporates the damping effects because of the
relaxation time 7. Note that within the quantum
approach such kind of consideration can not be
achieved directly because of Hermitian form of a
quantum many-body Hamiltonian. (ii) The kinetic
equation (2.1) can be easily generalized to the case
of finite temperature 7. Note also that the ensemble
smearing and thereby conception of temperature can
not be implanted into the quantum equations of mo-
tion in principle. Unfortunately a direct solution of
the kinetic equation (1.1) is a hard problem and can
be performed in some simplest cases only [18, 19].

2.2. Local equations of motion

Additional advantage of kinetic approach is the
possibility to derive the macroscopic equations of
motion directly starting from Eq. (2.1). One of such
kind example gives the transition from Eq. (2.1) to
the equations of motion for the local observable
values of particle density, velocity field, pressure,
etc. Taking the first three moments in p -space from

the kinetic Eq. (2.1), one can obtain

o€ ot
op

m@
p@tv

=-V Idt exp( }P(f)/\ ()+V,¢, (22)

0

where p is the particle density, u
field

is the velocity

v

_ dp_p, g
B I (27h)* m

P is the quantum pressure
2 5/3
P= Egk[n - p ’

&,, 18 the potential energy density, &, is the kine-

tic energy density and the memory tensor A, is

given by

2 -

A,=Vou,+Vu —=V-i. (2.3)

(98]

The integral (so called memory integral) on the
right hand side of Eq. (2.2) and the memory tensor
(2.3) itself occur due to the Fermi distortion effect.
This effect influences the nuclear dynamics extreme-

ly strongly. We will demonstrate several examples
which are related to the nuclear giant multipole re-
sonances (GMR) and to the nuclear fission.

3. Giant multipole resonances
3.1. Shape vibrations

An instructive example of the influence of the
memory and the Fermi surface distortion effects on
the nuclear dynamics represents the nuclear shape
vibrations (capillary waves). In Fig. 1, we show the
energy of the isoscalar 2" collective excitations
which exhaust about of 100 % sum rules.

ha)r , MeV
40 T T e
35 [ =
30 : =
2s 2+ 3
20 - FLDM =
15 :— sg\ 64 - A3 ———
- - -E\‘-g‘;}iqii_ — .
1o ;— e % o
F~_ LDM ]
S~ 25 - A™Y/2 3
O:s L (IR | |—n—|—u r.—.—. rl_l_-l—-l t:
(o] 50 100 150 200 250
Mass Number A

Fig. 1. Dependence of the energy hw,. of strong collec-

tivized isoscalar 2* excitations on the mass number 4.
The dashed line is for the liquid drop model (LDM) and
the solid line is for the Fermi liquid drop model (FLDM)
where the Fermi surface distortion effects are taken into
account.

The traditional liquid drop model of incompress-
ible liquid predicts the energy behavior
he, ~25-47" MeV [3, 12] (dashed line in Fig. 1)
which contradicts the experimental data for the
strongly collectivized (which exhaust about 100 %
of sum rules) 2" excitations. Taking into account the
Fermi surface distortion effects and solving Eq. (2.1)
we obtain the completely different 4-dependency
(solid FLDM line in Fig. 1) and the significantly
higher energy 7w, ~64- 4" MeV which is in a very
good agreement with experimental data.

The origin of this phenomenon can be easily un-
derstood if we take into consideration the following
circumstance. In the Fermi liquid drop, the deforma-
tion of the surface or the distortion of the particle

density in 7 -space lead to the distortion of the Fer-
mi surface in p-space for each 7 -point of the nuc-
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leus. The distortion of the Fermi surface needs an
additional potential energy and thereby leads to a
shift up of the eigenenergy of the eigenvibrations.
Note also that the motion in both the 7 -space and
the p-space is consistent due to the relaxation time.

Namely, on the distorted Fermi surface the interpar-
ticle collisions become possible and produce the
two-body relaxation and the damping [20]. That
leads to the damping in the basic motion in 7 -space.
Moreover the Fermi surface distortion provides
an anisotropy of the pressure tensor and increases
significantly the stiffness of the nuclear surface.

3.2. Compression modes

Nuclear Fermi liquid is compressible. The in-
compressibility coefficient K determines the zero
sound velocity ¢, and the corresponding eigenfre-

quencies of compression (breathing) eigenvibrations.
Actually, at present one has the reliable experimen-
tal information about two kinds of compression
modes, namely, the giant monopole 0* resonance
and the isoscalar giant dipole 1~ resonance. The
eigenenergies of both modes depend on the incom-
pressibility coefficient K and this fact is usually used
for the experimental determination of the nuclear
incompressibility coefficient K.

However one has to be careful with such kind of
determination of K. In a classical (not nuclear)
liquid, we have usually a short relaxation time re-
gime wr <1 and the eigenenergy of compression
mode is given by

heo. =h /ﬁk, k=Z,
0 9m R

where k is the wave number. Thus, we have a direct
relation between the eigenenergy and the stiffness
coefficient K.

In contrast to this case, in a nuclear Fermi liquid
(i.e., for long relaxation time regime wr>1) we
have the completely different relation between both
the eigenfrequency @, and the incompressibility K .

orkl,

3.1)

Namely,
3-K T
ho, ~h,|—k, k=~ s >1. 3.2
wo 9m \/SR T ( )

Fortunately, there is a nice compensation of the re-
normalization factor =3 at the incompressibility
(the value of 3K in Eq. (3.2) instead of K in

Eq. (3.1)) due to the reducing of the wave number &
and the final result for ha, is similar to the normal
liquid given by Eq. (3.1).

An important point is that such kind of compen-
sation of the incompressibility growth exists for the
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main tone only but not for the overtones. In this re-
spect, it is interesting to consider the isoscalar giant
dipole resonance which is the overtone to the spu-
rious 1° main tone. (The spurious 1~ main tone
represents the translation of the nucleus as the whole
with zero’s excitation energy.) In Fig. 2 we show the
ratio of the energy centroids for the isoscalar EQ and
E1 giant resonances [21].

E1/E0
1.9— . - . . . .

1.8 1

/ scaling

=
T
(g
—F——
——
1

B LDM

/ P R . .
: ‘L%!{] 100 120 140 160 180

[
200 220

A

Fig. 2. Dependence of the energy ratio E1/E0 on the nuc-
lear mass number A. The ratio of the LDM is obtained
within the framework of a standard liquid drop model.
The solid lines / and 2 are obtained from Fermi liquid
drop model for 7 — oo (solid line 1) and for realistic re-
laxation time 7=8-10"s (solid line 2). The ratio
HF-RPA (dashed line) is from fully self-consistent RPA
calculations.

In agreement with the above mentioned compen-
sation effect, the dipole compression mode should
be additionally shifted up with respect to the mono-
pole one. This fact is reflected in Fig. 2 where the
curve [ (pure Fermi liquid calculation without
damping, i.e., for 7 — o) is strongly shifted up with
respect to the liquid drop model calculations (solid
line LDM). Note that the quantum RPA calculations,
where the damping effects are neglected, give the
shift up for the ratio E1/E0Q also. A good agreement
with experimental data is obtained within the Fermi
liquid approach if the relaxation (damping effect) is
taken into account (see solid line 2 in Fig. 2).

3.3. Isovector mode

Fermi liquid approach can be also applied to the
isovector excitations where the proton and neutron
liquids are shifted in opposite directions. The resto-
ring force is determined here by the symmetry energy

b, =b

sym sym,vol

+b

sym,surf

A71/3 + bsym,F(A) > (33)

where b, ., and b, - are the volume and surface

S

contributions to the symmetry energy, and b,,, .(A4)
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is the contribution from the Fermi surface distortion.
As above mentioned, the Fermi liquid has some fea-
tures of the solid state because of the Fermi surface
distortion effects. Due to this fact, the isovector
mode in a nuclear Fermi liquid represents a combi-
nation of both the Steinwedel - Jensen mode and
Goldhaber - Teller one. This peculiarity of the Fermi
liquid approach provides a good description of A-
dependency for the light and heavy nuclei simulta-
neously [22]. It is shown in Fig. 3.

E- A" MeV
90 r . T r

80
70

60

50 ]

405 50

700 150 200 250

A
Fig. 3. Dependence of the energy of isovector dipole giant
resonance on the mass number 4: the dashed line is the
calculation which includes the Fermi surface deformation
up to a quadrupole one (scaling approximation); the solid
line was obtained within Fermi liquid model without re-
strictions on the multipolarity of the Fermi surface distor-
tions; the solid straight line is the traditional LDM result

E ~80-A4"*MeV [3].

The Fermi liquid approach allows one to repro-
duce the A-dependency of the enhancement factor
for so-called model-independent sum rule m,. Note

that in contrast to the isoscalar dipole mode where
the sum m, is really model-independent, the value
of m, is actually model-dependent for the isovector
dipole excitations. The energy weighted sum m, is
related to the photoabsorption cross-section o, (@)
of y-quanta as following [22]

27*he* NZ

me A

m, =]Ed(ha))crabs(a)): [1+x(A4)].

where 1+ x(A) is the enhancement factor with re-

spect to the classical Thomas - Reiche - Khun (TRK)
sum rule. In the isoscalar case, the enhancement fac-
tor is absent and x(A4) =0, i.e., m, sum rule is really

model independent. In contrast to that, in the isovec-
tor case, one has x(A)#0. The origin of non-zero

value of x(A4) =0 is the velocity dependency of the

inter-nucleon interaction and the fact that the nucle-
on effective mass in the isovector channel is differ-
ent than the one for the isoscalar excitations.

The enhancement factor 1+ x(A4) for the isovec-

tor giant dipole resonances is shown in Fig. 4.

1+ x(A4)

1.4} *
L ] L]
12} * o o° o
% '______*____———————.'_- L J
L ] [ ] . ]
1} O B ® . * |
Y
08}
0.6}
50 100 150 200 250
A

Fig. 4. Dependence of the enhancement factor 1+ x(A4)

for the isovector dipole giant resonance on the mass num-
ber A obtained within Fermi liquid approach (solid line).
The dashed line is the microscopic RPA calculations with
Skyrme forces. The solid points are the experimental data
of the Livermore group.

An extraction of A-dependency of the enhance-
ment factor 1+ x(4) from the experimental data is
not a simple problem. The experimental data has no
a good accuracy yet. Note that the standard RPA
calculations overestimate the enhancement factor
and the Fermi liquid results of Fig. 4 are more ap-
propriate.

4. Large amplitude motion

As it was mentioned in Sect. 3, the collective mo-
tion of the nuclear Fermi liquid is accompanied by
the dynamical distortion of the Fermi surface and the
collective potential energy £ is subsidized by an

pot

additional contribution, E because of the

pot,F
dynamic Fermi surface deformation. The energy
E,, r 1s a smooth quantity (in sense of the quantum

shell oscillations) and it can not be recovered taking
into consideration the quantum shell corrections to
the adiabatic (static) potential energy deformation.
This fact creates the following problem.

The LDM deformation energy E,, has a mini-

mum for a sphere, i.e., for ¢ =0. The total deforma-
tion energy

E,.(q)=E, (q)+5U(q) 4.1)

includes both the smooth part £ 4« and the irregular

shell correction S6U(g) [26]. The shell correction
oU(q) provides two effects: a shift of the ground
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state to values of ¢#0 and an appearance of the
second minimum in £, (q) (super-deformation).

Note, however, that the practical calculations of the
deformation energy £, (q) assumes always the

presence of the external cranking field which disap-
pears in the stationary points of minima and maxima
of energy E, (q) only. Both the shell correction

method and the constrained Hartree — Fock appro-
ximation are not free from this inconvenience. The
behavior of deformation energy £, (q) between the

stationary points where OE, (q)/0g=0 is still a

puzzle which has no solution yet. Another problem
occurs on the distant right slope of curve £, (q),

i.e., in the case of the descent of the nucleus from
the barrier to the scission point.

Considering the nuclear shape deformation near
the LDM ground state at ¢ =0, we saw earlier (see

Fig. 1) the strong increase of the surface stiffness
coefficient due to the Fermi surface distortion effect
and the corresponding shift of the energy of the sur-
face eigenvibrations from the region of 1+2MeV to

10+15MeV . On the right slope of the fission bar-

rier one can also expect that the same dynamical
Fermi surface distortion effects should influence the
descent of the nucleus from the fission barrier. The
following problem can occur in this case. If the de-
formation energy E,, is given by Eq. (4.1), then the

question is how the smooth energy E 4« 10oks like.

Does this smooth energy equal to the adiabatic lig-
uid drop energy or to the energy of the Fermi liquid
drop which includes the additional contribution from
the Fermi surface distortion effect?

To answer this question we have to derive the
equations of motion for the shape variables which
can be applied to the large amplitude motion.
Assuming the incompressible nuclear Fermi liquid
and reducing the above established non-Markovian
local equations of motion (2.2) for the velocity field,
one can obtain the following quite general macros-
copic equations of motion [9 - 11]

4l . 1X0B.(q). .
DB, += > — 4, |+
2 oq,

Jj=1 k=1

B D e,
aq.

i

5 ’ t’_t " - ’
+§:Idtexp(—;—jkb(at)qgt)z
J=

4.2)
where x,(¢,¢) is the memory tensor and &(¢) is the

random force which satisfies the following property
for the ensemble smearing
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(E0)=0. (&0& )~ Texp(—@jd,,

4.3)
where <> means the ensemble smearing.

The non-Markovian Langeven Egs. (4.2) can be
solved directly. The mass tensor B,(q) is usually

evaluated taking into account the vortex motion also.
The driving force —0F (@)1 0g; can be taken from

the liquid drop model. A new element in Eq. (4.2) is
the memory integral which provides the contribution
to both the conservative (elastic), F, . (g,t), and

the dissipative (friction), F; ,(q,t) , forces

i

N

Zjdt'exp(t—;tjlf,-j(f,f')i]j(f’) =

F=p

= F;',cons(q7t) + F;',dis (q7t) N (44)
It can be shown that the conservative time-
reversible elastic force F,  (g,t) acts against the

driving force —6Ep0t(q)/6q,. always. That creates

the effect of a hindrance to the fission for the des-
cent from the fission barrier to the scission point.
This effect depends on both the collective velocity
and the relaxation time. In the case of slow motion
the hindrance is absent similarly to the first sound
regime for small amplitude vibrations. The hin-
drance effect grows if the collective velocity is
growing. Due to this peculiarity, the velocity of des-
cent goes down, i.e., the hindrance effect becomes
weaker and the nucleus starts to accelerate again,
etc. Such kind of change of the hindrance effect
along the descent trajectory leads to the characteris-
tic shape oscillations which accompany the descent
of the nucleus from the fission barrier [9].

4.1. Descent from the fission barrier

We will apply the non-Markovian approach to
the symmetric nuclear fission in two dimension case.
The shape of the fissionable nucleus is derived by
the rotation of the profile function Y(z;{gq,(¢)}) in

the following form

(= +8)
0

Y(z,4q,(0)}) =Y(2:4,,8,) =

>

4.5)
where the multiplier O guarantees the volume con-
servation,

&g 5+8)

Q= R
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Here, all quantities of the length dimension are
expressed in the R, units. The parameter ¢, deter-
mines the general elongation of the figure and ¢, is
related to the radius of the neck. For ¢, = oo, the
shapes coincide with the spheroidal ones. At finite
¢, (&, > 0 for bound figures) the neck appears and
the value ¢, = 0 corresponds to the scission point
after which the figure is divided in the two parts for
¢, <0.

To make the discussion more clear we compare
both the non-Markovian (Fermi liquid drop model)
and the Markovian (traditional liquid drop model)
results. For a moment, we restrict ourselves by the
one dimension case. The Markovian limit is
obtained from Eq. (4.2) for 7 — 0 and reads

1 6B(q) (.12 __ aépot(Q)

B(q)j +
(9)q 2 o o4

-y(@)q, (4.6)

where y(q) is the friction coefficient

— w0 BT
O ()

4.7

The numerical calculations of Ref. [9] for the one
dimension motion (descent from barrier) near the
saddle point shows two consequences of the memory
effect (Fermi surface distortion effect): (i) The des-
cent is strongly hindered due to the Fermi surface
distortion effect, (i) The memory effects lead to the
characteristic oscillations of nuclear shape. The time
dependency of shape parameter is then given by

Ag(t) = Cgegt +A,e """ sin(Et / h)+

+B,e """ cos(Et/ h), (4.8)

where ¢ is the instability growth rate, £/#% is the

characteristic eigenfrequency and I is the damping
width. All these values depend on the relaxation
time 7. For realistic value of the relaxation time
r~8-10%s, we can expect the accompanied cha-
racteristic  oscillations with the eigenenergy
E =~ 6+7MeV. That is quite below a typical energy

of giant resonances and exceeds the energy of ther-
mal gamma-quanta. The intriguing problem is to
study experimentally the corresponding gamma-
quanta emission which accompanies the descent of
the nucleus from the fission barrier (pre-scission
y-quanta).

The profile function of Eq. (4.5) provides the
descent of the nucleus in two-dimension space of

T 4
- wp =K,/ B, K, =%7zp0p;Rg.

shape variables: ¢ ={q,,9,} ={{,,¢,}. The fission

point is derived by the condition of the disappear-
ance of the restoring force with respect to neck ra-
dius. The corresponding condition reads

OE,,(9) _
o3

The separation of fissionable nucleus in two frag-
ments happens in the crossing point of both the tra-
jectory (obtained from Eq. (4.2)) and the scission
line (obtained from Eq. (4.9)). In the long relaxation
time regime, the memory effects hinder strongly the
descent of the nucleus from the fission barrier with
respect to the usual liquid drop model with friction.
For the realistic relaxation time 7~8-10s [23 -
25] one has a factor about of 2 for the hindrance
effect [9]. This hindrance is because of the Fermi
distortion effect. The Fermi distortions produce, as it
was above mentioned, the conservative (elastic)
force which works against the usual driving force
occurred on the adiabatic fission barrier.

This fact is extremely important for understand-
ing of the energy balance at the scission point and
the yield of the kinetic energy of the fission frag-
ments. The most probable total kinetic energy (TKE)
of fission fragments is given by

0. (4.9)

E_=E. +E (4.10)

kin Coul kin,ps >

where E , is the repulsive Coulomb energy at the

scission point and E,, = is the pre-scission kinetic

in,ps

energy. The energy F,, depends on the redistribu-

tion of the potential energy, AE ,, which is released

pot >
from the fission barrier among different components.
Namely, the following energy balance exists at
fission point

AE,, =E

= Hkin,ps dis

+E, +F

F.,ps >

(4.11)

where E

diss

is the dissipation energy and E,  is the
energy which is collected (at scission point) as the

potential energy due to the Fermi surface deforma-
tion. In contrast to dissipation energy E, , the po-

iss >

tential energy E, , is time reversible, i.e., it is not

transformed to the heat. The balance of energies is
illustrated in Fig. 5.

It is seen from Fig. 5 that the presence of memory
effects (solid line) leads to a decrease of the pre-
scission kinetic energy. This is because a significant
part of the potential energy AE,, at the scission

point is collected as the energy of the Fermi surface
deformation. Due to this fact, the nucleus loses a
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Fig. 5. Fission-fragment kinetic energy, E,, , and the
Coulomb repulsive energy at the scission point, E_,,,

versus the relaxation time t for the nucleus *°U. The
solid lines represent the result of the calculation in pres-
ence of the memory effects and the dashed lines are for
the case of Markovian (no memory) motion with the
friction forces.

part of the pre-scission kinetic energy converting it
into the potential energy of the Fermi surface distor-
tion instead of the time-irreversible heating of the
nucleus. A good agreement with the experimental
value for the TKE is obtained for a moderate value
of the relaxation time 7=~8-10%s. Note that to
achieve such kind of result within the traditional
liquid drop model the over-damped motion for the
descent from the fission barrier is usually assumed.

E_ ,MeV
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300 T |
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200 -

150 +

100 -
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2000
ZZ /Al/3
Fig. 6. The most probable total kinetic energy (TKE) E,,

oLl L 1 L I

0 400 800 1200 1600

of fission versus the fission parameter Z>/ 4" within the
Fermi liquid drop model for the relaxation time
r=8-10"s.
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The agreement of the non-Markovian calcula-
tions of the TKE in actinide nuclei with experimen-
tal data is shown in Fig. 6. All numerical calcula-
tions were here performed for the relaxation time
r~8-10”s which corresponds to the moderate
friction (damping) in fissionable nucleus.

That is important from point of view of consis-
tency of theory. In particular, using the same value
of the relaxation time 7=8-10"s we have to be
able to reproduce the widths of the giant multipole
resonances.

I, MeV
3]

0 1 1 1 1
0 20 100 120 200 250

A

Fig. 7. The collisional width of the giant quadrupole

resonance within the Fermi-liquid drop model for the

relaxation time 7 =8-10"s (solid line).

This possibility is demonstrated in Fig. 7 for the
isoscalar giant quadrupole resonances. We point out
that the use of the friction coefficient obtained from
a fit of the TKE to the experimental data within the
traditional (not Fermi-liquid) liquid drop model
leads to a significant overestimate of the widths of
the giant multipole resonances.

5. Conclusions

The collective motion of the nuclear Fermi liquid
is accompanied by the dynamical distortion of the
Fermi surface. In general, the corresponding ma-
croscopic equations of motion are non-Markovian
and contain the memory integral which is caused by
the Fermi surface distortions and depends on the
relaxation time 1. The memory effects on the nuclear
collective motion disappear in two limits: at zero
relaxation time, T — 0, and at T — co. The memory
integral contains the contribution from both the time
reversible elastic force and the dissipative friction
force.

The eigenmotion near the ground state of the
nuclear Fermi-liquid drop is influenced by the mem-
ory effects through both the additional contribution
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to the stiffness, C,., and to the friction coefficient 7.

In the rare collision limit of Tt — oo, the additional
contribution (elastic force) appears due to the memo-
ry integral. The contribution from the elastic force is
significantly stronger than the one caused by the
adiabatic driving force. The presence of the elastic
force provides a correct A-dependence of the energy
of the giant multipole resonances.

The development of instability near the fission
barrier is strongly influenced by the memory effects
if the relaxation time 7 is large enough. In such a
case, a drift of the nucleus from the barrier to the
scission point is accompanied by characteristic
shape oscillations which depend on the memory ker-
nel and on the relaxation time 1. The shape oscilla-
tions appear due to the elastic force induced by the
memory integral. The elastic force acts against the
adiabatic force -0E ,,(¢)/ 9q and hinders the motion
to the scission point. In contrast to the case of the
Markovian motion, the delay in the fission is caused
here by the conservative elastic force but not only by
the friction force. Due to this fact, the nucleus loses
a part of the pre-scission kinetic energy converting it
into the potential energy of the Fermi surface distor-
tion instead of the time-irreversible heating of the

nucleus. In contrast to the Markovian motion, the
memory effects provide a monotonous dependence
of the saddle-to-scission time on the relaxation time
t. This is caused by the elastic forces produced by
the memory integral, which lead to the additional
hindrance effect for the descent from the barrier at
large t.

The memory effects lead to the decrease of the
fission-fragment kinetic energy, E,, , with respect to
the one obtained from the Markovian motion with
friction. This is because a significant part of the po-
tential energy at the scission point is collected as the
energy of the Fermi surface deformation. Note that
the decrease of the fission-fragment kinetic energy
due to the memory effects is enhanced in the rare
collision regime (at larger relaxation time) while the
effect due to friction decreases.

We pointed out also that the Fermi liquid drop
model provides a consistent description of the dissi-
pation processes in completely different fields of
nuclear dynamics. Namely, both the kinetic energy
fission fragments and the widths of giant multipole
resonances can be described assuming the same val-
ue of the collisional relaxation time.
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B. M. Kosomieun
HE-MAPKIBCBKA SJEPHA JUHAMIKA

IIporoHytOThCS PIBHSIHHS pyXy Ul TapaMeTpiB (OPMHU siapa, [0 BCTAHOBIIOOTH MPSIMUIA 3B’SI30K e€(EKTIB mam’sTi 3
JMHAMIYHUM 30ypeHHsIM noBepxHi DepMmi. PIBHSHS pyXy IUIs KpaIUIMHU sAepHOT hepMi-piliHA OTPUMYIOTHCS 3 BUKOPHC-
TaHHSM  3IIITOBXYBAJbHOIO  KIHETHYHOTO  pIBHSHHSA. Y  3aralbHOMy  BHNQJKy OTPHMaHi  pIBHSHHSA €
He-MapkiBcbkuMu. EexTH mam’siTi 0B’ sa3aHi TyT i3 30ypeHHAM moBepxHi Depmi 1 3a5ekarts Bi yacy pesakcaiii. ['oos-
Ha MeTa poOOTH MOJATac B 3aCTOCYBaHHI He-MapKiBChbKOI JUHAMIKH IO OMHUCY SIEPHUX MYJIBTUIONBHUX TIraHTCHKHX
PE30HAHCIB 1 KOJIEKTHBHOTO PYXY 3 BEIUKOIO aMILTITY0I0. My OepeMo 10 yBark TakoX [0 BUITAIKOBHX CHJI i KOHIICHT-
pyeMoch Ha (OpMyBaHHI KOHCEPBATHBHUX 1 TUCUIIATUBHUX CHJI MPU KOJIEKTUBHOMY pYCi, IO JAa€ 3MOTY OLIbILI YITKO BH-
SIBUTH BIUIMB €()eKTiB MaM’sITi Ha sAepHY AMHAMIiKy. Y IbOMy BiZHOIICHHI 3alpONOHOBAaHMII MiIXix sBIsLE coOo0 y3a-
TaJbHEHHS TpaJULiiHOI MOJeNi PiKoi Kparuli Ha BUMAJOK KPAIUIMHU AiepHoi GepMi-piqunu. [Ipu npaktuaHOoMy 3acto-
CYBaHHI MU IIPUALIIEMO OCOOJIUBY yBary OIUCY CILyCKY siipa 3 0ap’epa MoiTy A0 TOUKU PO3PHUBY.

Kniouosi crosea: Ghepmi-piinHa, MyJIbTHIIONBHI TITAHTCHKI PE30HAHCH, SACPHUH MO, eEKTH mam’sTi.

B. M. Kosomuen

HE-MAPKOBCKAS SIAEPHASI TUHAMUKA

IIpennaratorcst ypaBHEHUs! ABUKEHUS A7 IapaMeTpoB (OpPMBI sApa, KOTOPbIE YCTaHABIUBAIOT IPSAMYIO CBA3b d0-
(heKTOB IaMATU ¢ JUHAMUYECKHM HCKaXKeHUEM HoBepxHocTu PepMu. YpaBHEHUs IBHKEHUS KaIUIU slepHOU depmu-
JKMIKOCTH TIOJIy4aroTCsl U3 CTOJIKHOBUTEIBHOIO KMHETHUECKOTO ypaBHEHHA. B 001eM cilydae IOy4eHHbIE YPaBHEHUS
€CTh HE-MapKOBCKUMU. D(HEKThI NaMATH CBA3aHbI 37€Ch C UCKaXKEHUEM NOBEpXHOCTH DepMU U 3aBUCAT OT BPEMEHU
penakcanuy. OcHOBHas LeJb pabOTHI COCTOUT B IPUMEHEHUH HE-MApPKOBCKOM JTUHAMUKH K OIMHCAHUIO SICPHBIX MYJIb-
THUIOJbHBIX TUTAHTCKUAX PE30HAHCOB U KOJUIEKTUBHOIO IBIXKEHHS C OONBLION aMIUIUTYAOH. MBI yuuTBIBAEM TaKxkKe
JEeHCTBUE CIIyJalHBIX CHJI U COCPEAOTOUMBAEMCS Ha ()OPMHUPOBAHUHM KOHCEPBATHBHBIX M AUCCUIATUBHBIX CHI B IIPO-
Tjecce KOJUIEKTHBHOTO JBIDKEHNUS, UTO MO3BOJNSAET OoNee UeTKO BBISIBUTH BIHSAHUE 2()(EKTOB MaMATH Ha SACPHYIO ITHHA-
MHKY. B 3TOM OTHOIICHUH NpPEIIoKEHHBII TOAXO0 ABIAETCS 0000IEeHNEeM TPAAUIIMOHHON MOJEIH >KHIKON KAl Ha
CIydai Kard saepHoi dpepmu-xuakocTu. IIpy mpakTHuecKoM IPUMEHEHNH MBI YAenseM 0c000e BHIMAaHNE ONMHCAHHIO
cIycka spa ¢ 6apbepa JeJIeHHs 10 TOUKU Pa3phlBa.

Kniouesbie cnosa: hepMu-KUIKOCTD, My TbTHIIONBHBIE THTAHTCKHE PE30HAHCHI, AAEpHOE AeTeHue, d3QPEKTH TaMATH.
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