Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2010, volume 11, issue 4, pages 347-354.
Section: Nuclear Physics.
Received: 07.06.2010; Published online: 30.12.2010.
PDF Full text (en)
https://doi.org/10.15407/jnpae2010.04.347

Freeze-out properties of hot nuclear matter created in heavy ion collisions

S. Shlomo1

1Cyclotron Institute, Texas A&M University, College Station, TX, USA

Abstract: The study of properties of nuclei under extreme conditions of temperature and density has been the subject of many investigations in recent decades, since they are very important in the study of the process of supernovae, neutron stars and nuclei. Heavy-ion collision experiments are often employed to determine these properties. We present a short and limited review of the theoretical and experimental status of determining the temperature and density of the disassembling hot nucleus from ratios of the yields of emitted fragments.

Keywords: hot nuclei, nuclear fragmentation, phase transition.

References:

1. Albergo S., Costa S., Costanzo E., Rubbino A. Nuovo Cimento A 89 (1985) 1. https://doi.org/10.1007/BF02773614

2. Bondorf J. P., Donangelo R., Mishustin I. N., Schulz H. Nucl. Phys. A 444 (1985) 460. https://doi.org/10.1016/0375-9474(85)90463-4

3. Randrup J., Koonin S. E. Nucl. Phys. A 356 (1981) 223. https://doi.org/10.1016/0375-9474(81)90124-X

4. Pochodzalla A. et al. Phys. Rev. Lett. 75 (1995) 1040. https://doi.org/10.1103/PhysRevLett.75.1040

5. Shlomo S., Kolomietz V. M. Rep. Prog. Phys. 68 (2005) 1. https://doi.org/10.1088/0034-4885/68/1/R01

6. Kolomiets A., Kolomietz V. M., Shlomo S. Phys. Rev. C 55 (1997) 1376. https://doi.org/10.1103/PhysRevC.55.1376

7. Shlomo S., De J. N., Kolomiets A. Phys. Rev. C 55 (1997) R2155(R). https://doi.org/10.1103/PhysRevC.55.R2155

8. Kolomiets A. et al. Phys. Rev. C 54 (1996) R472. https://doi.org/10.1103/PhysRevC.54.R472

9. Shlomo S., Ropke G., Natowitz J. B. et al. Phys. Rev. C 79 (2009) 034604. https://doi.org/10.1103/PhysRevC.79.034604

10. Das Gupta S., Mekjian A. Phys. Rep. 72 (1981) 131. https://doi.org/10.1016/0370-1573(81)90012-0

11. Subramanian P. R, Csernai L. P, Stocker H. et al. J. Phys. G: Nucl. Phys. 7 (1981) L241. https://doi.org/10.1088/0305-4616/7/10/006

12. Konopka J., Graf H., Stocker H., Greiner W. Phys. Rev. C 50 (1994) 2085. https://doi.org/10.1103/PhysRevC.50.2085

13. Wigner E., Seitz F. Phys. Rev. 46 (1934) 509. https://doi.org/10.1103/PhysRev.46.509

14. Bondorf J. P., Donangelo R., Mishustin I. N. et al. Nucl. Phys. A 443 (1985) 321; https://doi.org/10.1016/0375-9474(85)90266-0

Bondorf J. P., Botvina A. S., Iljinov A. S. et al. Phys. Rep. 257 (1995) 133. https://doi.org/10.1016/0370-1573(94)00097-M

15. Mekjian A. Phys. Rev. C 17 (1978) 1051; https://doi.org/10.1103/PhysRevC.17.1051

Nucl. Phys. A 312 (1978) 491; https://doi.org/10.1016/0375-9474(78)90604-8

Phys. Lett. B 89 (1980) 177. https://doi.org/10.1016/0370-2693(80)90004-0

16. Landau L. D., Lifshitz E. M. Statistical Physics. Part 1, p. 77 (Oxford: Pergamon Press Ltd., 1980).

17. Audi G., Wapstra A. H. Nucl. Phys. A 565 (1993) 1. https://doi.org/10.1016/0375-9474(93)90024-R

18. Campi X., Krivine H., Plagnol E. Phys. Rev. C 50 (1994) 2680. https://doi.org/10.1103/PhysRevC.50.R2680

19. Campi X., Krivine H., Plagnol E. Phys. Lett. B 385 (1996) 1. https://doi.org/10.1016/0370-2693(96)00839-8

20. Gross D. He. Rep. Prog. Phys. 53 (1990) 605. https://doi.org/10.1088/0034-4885/53/5/003

21. Jeong S. C. et al. Phys. Rev. Lett. 72 (1994) 3468. https://doi.org/10.1103/PhysRevLett.72.3468

22. Hsi W. C. et al. Phys. Rev. Lett. 73 (1994) 3367. https://doi.org/10.1103/PhysRevLett.73.3367

23. Kunde G. J. et al. Phys. Rev. Lett. 74 (1995) 38. https://doi.org/10.1103/PhysRevLett.74.38

24. Pal Subrata, Samaddar S. K., De J. N. Nucl. Phys. A 608 (1996) 49. https://doi.org/10.1016/0375-9474(96)00271-0

25. Marie N. et al. Phys. Lett. B 391 (1997) 15. https://doi.org/10.1016/S0370-2693(96)01446-3

26. Fai G., Randrup J. Nucl. Phys. A 381 (1982) 557. https://doi.org/10.1016/0375-9474(82)90376-1

27. Fai G., Randrup J. Nucl. Phys. A 404 (1983) 551. https://doi.org/10.1016/0375-9474(83)90276-2

28. Ajzenberg-Selove F. Nucl. Phys. A 490 (1988) 1; https://doi.org/10.1016/0375-9474(88)90124-8

Nucl. Phys. A 506 (1990) 1; https://doi.org/10.1016/0375-9474(90)90271-M

Nucl. Phys. A 523 (1991) 1. https://doi.org/10.1016/0375-9474(91)90446-D

29. Tilley D. R., Weller H. B., Cheves C. M. Nucl. Phys. A 564 (1993) 1; https://doi.org/10.1016/0375-9474(93)90073-7

Ajzenberg-Selove F. Nucl. Phys. A 475 (1987) 1. https://doi.org/10.1016/0375-9474(87)90205-3

30. Johnston H., White T., Winger J. et al. Phys. Lett. B 371 (1996) 186. https://doi.org/10.1016/0370-2693(96)00019-6

31. Ropke G., Schmidt M., Munchow L., Schmidt H. Nucl. Phys. A 399 (1983) 587. https://doi.org/10.1016/0375-9474(83)90265-8