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The study of properties of nuclei under extreme conditions of temperature and density has been the subject of many 

investigations in recent decades, since they are very important in the study of the process of supernovae, neutron stars 
and nuclei. Heavy-ion collision experiments are often employed to determine these properties. We present a short and 
limited review of the theoretical and experimental status of determining the temperature and density of the 
disassembling hot nucleus from ratios of the yields of emitted fragments.  
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Introduction 
 

The decay of highly excited nuclear matter 
produced in the laboratory in heavy ion collisions is 
a complex dynamic process. One simple approach is 
the freeze-out concept in which the hot and dense 
matter in the initial stage is assumed to reach 
thermal equilibrium. Often the description of the 
nuclear matter, in particular the distribution of 
clusters, is calculated within a statistical 
multifragmentation model assuming nuclear 
statistical equilibrium (NSE). A simple method for 
extracting the temperature of the fragmenting hot 
system was given by Albergo, Costa, Costanzo and 
Rubbino (ACCR) [1]. In the context of a grand 
canonical model [2, 3], ACCR exploit the assumed 
existence of thermal and chemical equilibrium and 
the additional assumption that the fragments are 
formed in a 'freeze-out' volume large enough so that 
they can be treated as noninteracting. The method is 
based on selecting double ratios, 2R  of the yields 

 of emitted fragments, such that the nucleon 
chemical potentials are eliminated leading to a 
relation between 

( , )Y A Z

2R , and the binding energies of 
the selected fragments. This method has been used 
in the analysis of a large number of experiments [4, 
5]. In these experiments, the dependence of the 
excitation energy of the decaying system on the 
temperature (i.e. the caloric curve) was found to 
show irregularities which is interpreted as a possible 
signal for the occurrence of a phase transition in 
finite nuclei.  

T

In the following we discuss the ACCR method 
and the extensions necessary [5] to account for the 
effects of:  

(i) The long range Coulomb interactions among 
fragments in the freeze-out volume [6]. Here we 
employ the Wigner - Seitz approximation. 

(ii) The radial collective flow [7]. An expanding 
system, in a strict thermodynamic sense, is not in 
equilibrium. However, if the time scale involved in 

the expansion is much larger compared to the 
equilibration times in the expanding complex, i.e. 
the flow velocity is quite small compared to the 
average nucleonic velocity, the assumption of 
thermodynamic equilibrium may not be 
inappropriate.  

(iii) The post emission decay (secondary decay) 
processes of the fragments emitted from the freeze-
out surface [8].  

(iv) The effect of the medium on the binding 
energies of clusters [9].  

 
Nuclear temperature and density from ratios 

of fragments yields 
 

In statistical models describing the decay of a hot 
nucleus one assumes that at a certain point in the 
evolution, the excited nucleus reaches a thermal 
equilibrium at a certain freeze out volume, where the 
multifragmentation process takes place. In some of 
the proposed models it is also assumed that the 
disassembling nucleus reaches a chemical 
equilibrium, i.e., the chemical potentials of the 
emitted fragments are directly related to the 
chemical potentials of the nucleons in the decaying 
system [1, 10 - 12]. In the following we present a 
derivation of a relation between the temperature T  
and the double ratio 2R  of fragment yields (see 
Ref. [6] for details), which is similar to that 
proposed in Ref. [1]. We adopt the Wigner - Seitz 
approximation [13] for the Coulomb interaction 
among fragments and the Maxwell - Boltzmann 
statistics [11] and impose only the condition of 
thermal equilibrium.  

In the break-up stage of the multifragmentation 
we assume the presence of a number of isolated 
fragments (clusters) in thermal equilibrium at a 
temperature T within a certain freeze-out volume 

( )0 1V V κ= +

0n

, where  is the volume of the 
decaying nucleus corresponding to normal nuclear 
density 

0V

0.17=  fm-3 and  is the expansion κ
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parameter [14]. The main assumption of the 
statistical model of multifragmentation [3, 10, 15] is 
that the yield of the fragments ( , )s sN Z  with given 
numbers of neutrons, sN , and protons, sZ , is 
determined by the phase space available for decay. 
In a macrocanonical ensemble, the statistical 
properties of the system can be evaluated using the 
grand partition sum 

 
( )

{ }

n f p fN Z
f f f

f

e Qμ μ+∑Z /T , exp(Q= = /F ).T−    (1) 

 
In Eq. (1), fN , fZ , fQ  and fF  are the total 
neutron number, the total charge, the partition 
function and the free energy for a given event f , 
respectively. The Lagrange multipliers T , nμ , nμ  
are determined by the corresponding conservation 
laws, 
 

0 0, , 0f f .fE E N= = N Z Z=                (2) 
 
Here, 0N  and 0Z  are the numbers of neutrons and 
protons in the decaying system, respectively, 0E  is 
the excitation energy and the bar denotes an 
ensemble average of the corresponding quantity. The 
summation in Eq. (1) extends over all possible 
events which are characterized by the space position, 
momenta and internal degrees of freedom of the 
fragments. 

In general, the free energy fF  can be written as 
the sum of the contributions from the individual 
fragments s  and from their interaction as 

 
(1)

f s s
s

F F= ∑ (2) .fF+M                        (3) 

 
The quantity sM  is the number (multiplicity) of 
clusters with ( , )s sN Z  for a given event f . The 
individual free energy (1)

sF  includes the ground 
state, translation and internal free energies of a 
fragment s  and (2)

fF  is the contribution from inter-
fragment interaction. We point out that the (short-
range) nuclear inter-fragment interaction at the 
break-up stage is neglected under the main 
assumption of a freeze out volume. However, the 
free energy fF  is not an additive quantity because 
of the long-range Coulomb interaction between 
fragments. An essential simplification is achieved by 
employing the well known Wigner - Seitz 
approximation [13], so that the interaction free 
energy (2)

fF  can be represented as an additive 
quantity given by  

(2) (Coulomb) (0)( ) .f f C s C
s

F F E s M E≡ = +∑             (4) 

 

Here (0)
CE  is the Coulomb energy associated with the 

uniform distribution of the 0Z  protons over the 
freeze out volume. We point out that the constant 
term (0)

CE  does not affect the calculation of any 
average quantity and therefore is omitted in the 
following. Note also that the Coulomb self energy 

( ,C s )sE N Z  of the fragment is included in (1)
sF . The 

energy ( )CE s in Eq. (4) is given by [14] 
 

2
23( ) ,

5C s C
s

eE s Z
R

= −                           (5) 

 

where C
sR  is the radius of the Wigner - Seitz cell 

 
1/3

1/3

0 0

/(1 ) .
/

C s s
s s

Z AR R
Z A

κ
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

              (6) 

 
In Eq. (6), 0 0A N Z0= +  and s sA N Z= + s  are the 
numbers of particles of the decaying system and of 
the cluster s , respectively, and sR  is the (ground 
state) radius of cluster 1/3

0s sR r A 0r
κ

=  with = 1.2 fm. 
One usually adopts the values of 2=  and  

0 / 0Z A = 1/2.  
Using Eqs. (3) and (4), the partition function fQ  

can now be factorized due to the additivity of fF  
and can be written in the form [16] 

 

( transl. intr.

{ )

1 .
!

sM

f s s
s s

Q Q Q
M

=∏ )               (7) 

 

In Eq. (7)  is the partition function of the 
translational motion of the cluster 

transl.
sQ

s . It is given by, 
 

transl. 3/2
3 ,s s
T

VQ A
λ
′

=                           (8) 

 

where 22 /T mTλ π=  the thermal nucleon wave-
length and V ′  is the free volume available for the 
translational motion of clusters in the freeze-out 
volume V  [14]. The internal partition function intr.

sQ  
of fragment  in Eq. (7) is given by s
 

( )/intr. (2 ( ) 1) ,iE s T
s i

i
Q I s e−= +∑                 (9) 

 
where  and ( )iI s ( )iE s  are the total angular 
momenta and energies of the eigenstates of the 
cluster s , respectively. In the Wigner - Seitz 
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approximation one has 
 

*( ) ( ) ( ) ,i s i CE s B s E sε= + +                 (10) 
 
where sB  is the binding energy of cluster s  and 

*( )i sε  is its excitation energy.  
Using Eqs. (1), (7) and (10), we obtain that 
 

( )( ( )) / transl. *

{ } { }

1
!

sn s p s s C s

s

MN Z B E s M T
s s

M s s

e Q Q
M

μ μ+ − −= =∑∏Z

 

( )/ transl. *

{ }

exp ,s sM T
s s

s

e Q Qμ=∏                      (11) 

where  
( ) * ( )/* 2 ( ) 1 .i s T

s i
i

Q I s e ε−= +∑                     (12) 

 
For the purpose of simplification we have introduced 
in Eq. (11) the quantity 
 

( ) ,s n s p s s CN Z B E sμ μ μ= + − −                (13) 
 
It is important to note that apart from the Coulomb 
energy ( )CE s  the quantity sμ  defined in Eq. (13), is 
similar to the cluster chemical potential introduced 
by ACCR [1] under the condition of chemical 
equilibrium. We emphasize that, in contrast to 
Ref. [1], only the thermal equilibrium condition was 
imposed in the derivation of Eq. (11). Using 
Eqs. (3), (4), (8) and (11), the average multiplicity 

sM  of clusters  is given by s
 

( )/ transl. *

{ }

1 1
!

ss s

s

MM T
s s s s

M s s

M M e Q Q
M

μ= =∑ ∏Z
 

 

/ 3/2 *
3 .s T

s s
T

Ve A Qμ

λ
′

=                                 (14) 

 

Let us introduce the average density sn  of clusters 
s : 
 

( , ) .s
s s s

Mn n N Z
V

≡ =                         (15) 

 
Using Eqs. (12) - (14) one finds for the nucleon 
densities nn  and pn  the expressions, 
 

//
3

2 1 2 1,
1 1

pn TT
n p

T

n e n eμμχ χ
κ λ κ λ

= =
+ + 3 ,

T

       (16) 

 
where 0/V Vχ ′=  is the hindrance factor. Note that 
the nucleon spin-degeneracy factor 2 was taken into 
account. From Eqs. (13) - (16) one finds for the 
relative yield of  fragments  the expression s

( )
1

1 ( ( ))/3/2 3 *1 1 .
2 2

s
s s C

s s

A
A B E s Ts

s T sN Z
n p

n A Q e
n n

κ λ
χ

−
− − +⎛ ⎞+

= ⎜ ⎟
⎝ ⎠

(17) 

 
The ACCR method 

 
In the ACCR approach, the chemical equilibrium 

condition has the form, 
 

( , , ) ( ) ( ) ( ) ( , ) ,p nA Z T Z T A Z T B A Zμ μ μ= + − +  (18) 
 
Here, ( , , )A Z Tμ , ( )p Tμ , and ( )n Tμ  are the 
chemical potentials of the fragment , the free 
proton and neutron at the temperature , 
respectively, and  is the ground state 
binding energy [17] of the fragment . 
Employing Boltzmann statistics, the temperature can 
be deduced from the double ratio 

( , )A Z
T

)A Z
( , )B A Z > 0

( ,

 

1 1 1 1
2

2 2 2 2

( , ) / ( , )
( , ) / ( , )

Y A Z Y A ZR
Y A Z Y A Z

′ ′
= =

′ ′
 

 

( ) ( )1 1 1 1 2 2 2 2, , , , , , , exp / ,F A Z A Z A Z A Z B T′ ′ ′ ′= ⋅ Δ  
 

( )1 1 1 1 2 2 2 2, , , , , , ,F A Z A Z A Z A Z′ ′ ′ ′ =  
 

( )(
( )(

)
)

3/2
1 1 2 21 2

1 2 1 1 2 2

2 ( , ) 1 2 ( , ) 1
,

2 ( , ) 1 2 ( , ) 1
I A Z I A ZA A

A A I A Z I A Z
′ ′ + +⎛ ′ ⎞⋅

= ⎜ ⎟′ ′⋅ +⎝ ⎠ ′ +
  (19) 

 
where  and  are the total angular 
momentum of the ground state and ground state 
yield of the fragment ( , respectively. The 
quantity 

( , )I A Z ( , )Y A Z

,A Z )
BΔ  is given in terms of the binding 

energies of the fragments: 
 

1 1 1 1 2 2 2 2( , ) ( , ) ( , ) ( , ).B B A Z B A Z B A Z B A Z′ ′ ′ ′Δ = − + − (20) 
 
The fragment yields considered in Eq. (20) must be 
selected in such a way that 
 

( )1 1 2 2,N N n N N n′ ′= + = +  
and 

( )1 1 2 2,Z Z p Z Z p′ ′= + = + ,             (21) 
 
where A N Z= + ,  and n p  are integer numbers. It 
is important to note that the method is based on 
selecting double ratios, 2R  of the yields of  
of emitted fragments, such that the nucleon chemical 
potentials are eliminated leading to a relation 
between 

( , )Y A Z

2R ,  and the binding energies of the 
selected fragments.  

T
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Chemical equilibrium 
 

The expression of Eq. (17) is similar to that of 
ACCR [1], except for the volume correction term 

 and the Wigner - Seitz energy (1 ) /κ χ+ ( )CE s . 
We emphasize, however, that in contrast to Refs. [1, 
11, 12, 15], Eq. (17) was derived without imposing 
the condition of chemical equilibrium. Note that the 
grand partition sum in the form of Eq. (1) does not 
imply a macrocanonical description of clusters since 
the chemical potential of clusters does not enter Eq. 
(1). Moreover, the partition function of clusters used 
in the derivation, see Eqs. (7) - (9), is just the 

canonical partition function. This fact is essential 
conceptually since it allows the application of the 
result (14) in the case 1sM ≤ , where the 
macrocanonical description is doubtful.  
 

Effects of Coulomb interaction 
 

It is seen from Eq. (17) that the ACCR relation of 
Eq. (19) should be modified. Using Eq. (17), the 
temperature of the disassembling nucleus can be 
determined from the double ratio 2R  of the fragment 
yields  using the modified relation, ( , )Y A Z

 

( ) (
3/2

1 1 1 1 1 2 1 1 2 2
2

2 2 2 2 1 2 1 1 2 2

( , ) / ( , ) ( , , ) ( , , ) exp / exp / ,
( , ) / ( , ) ( , , ) ( , , ) C

Y A Z Y A Z A A A Z T A Z T )R B T E T
Y A Z Y A Z A A A Z T A Z T

ω ω
ω ω

′ ′ ⎛ ′ ⎞ ′ ′⋅
= = ⋅ Δ ⋅ −⎜ ⎟′ ′ ′ ′ ′⋅⎝ ⎠

Δ       (22) 

 
where we have adopted the notation of Ref. [1], 
using ( , ) ( , )s s sY A Z M N Z= , *( , , ) sA Z T Qω =  and 

( , ) ( , )s s sB A Z B N Z= − . In Eq. (22) BΔ  is given by 
Eq. (20) and CEΔ  is given in terms of the Wigner - 
Seitz Coulomb energy, Eq. (5), of the fragments: 
 

1 1 1 1( , ) ( , )C C CE E A Z E A Z′ ′Δ = − +  
 

2 2 2 2( , ) ( , ) .C CE A Z E A Z′ ′+ −                 (23) 
 

The expression of Eq. (22) differs from the 
ACCR [1] expression in the factor ( )exp /CE T−Δ

C

. 
For the case of double ratios of isotope fragments, 
i.e.  in (21), one has from Eq. (5), (6) and (23), 
that . Since the temperature deduced from 
Eq. (22) is proportional to 

0p =

CEΔ 0=
B EΔ − Δ , the Coulomb 

term may affect the value extracted for  for the 
cases with . In most cases, the correction to T  
is less than 20 %. However, in certain cases the 
change in T  can be as  much as 50%. For example, 
for the case of 

T
0p ≠

2R = ((Y(16O)/Y(12C))/Y(6Li)/Y(d)) we 
have that BΔ = 5.69 MeV and  MeV. 2.75−CEΔ =
 

Effects of flow 
 

Within the ACCR approach, one can first determine 
the temperature from double ratio 2R  of fragment 
yields, using Eq. (22), and then obtain the free neutron 
density at freeze-out from Eq. (17), using single ratios 
of yields of isotopes differing just by one unit of mass. 
The freeze-out density can then be determined by 
establishing the initial size of the fragmenting system 
and adopting the assumptions made by Campi et al 
[18]. Considering the caloric curve, Campi et al. [19] 
deduced for  MeV the value of 4T = 0/ 0.0n n 4≈ , 
i.e., a freeze out volume of , where  is the 

volume of the  nucleus at normal density. This value of 

025V 0V

0/ 0.0n n 4≈ , is much smaller than the values of 
0.16 0.3≈ −

50

 commonly used in the statistical multi 
fragmentation models [2, 20]. In all these model 
calculations, the influence of radial collective flow 
observed [21 - 23] in central nuclear collisions at 
energies 100≈ −  MeV/nucleon or above has been 
ignored. Below we consider the effect of flow on the 
freeze-out volume [7].  

In Ref. [24], a simple method to simulate the 
effect of collective radial flow through the inclusion 
of an external negative pressure in the total 
thermodynamic potential at freeze-out density was 
suggested. The external pressure  is then given by P

ss
P = − P∑ , where sP  is the internal partial 
pressure exerted by the radial outflowing s  
fragments at the freeze out surface. The validity of 
this model hinges on the assumption that the time 
scale involved in the expansion is larger compared 
to the equilibration times in the expanding complex, 
which works when the flow velocity is smaller 
compared to the average nucleonic velocity.  

It was shown in Ref. [24] that the flow pressure 
sP  can be related to the kinetic energy of flow sE  

for the fragments, 
 

(v , ) .fs s sT n EsP D= ⋅ ⋅                       (24) 
 
In Eq. (24), v f  is the magnitude of the radial flow 
velocity, and (v fs , ) 4.5D T ≈ . Experimental measu-
rements [25] indicate that the heavier fragments 
carry less flow energy per nucleon compared to the 
lighter ones. Thus sE , in Eq. (24), is assumed to 
take a simple parametric form 
 

,s sAαεE                                     (25) =
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where ε  is the average flow energy carried by a 
single nucleon and the value of α  is . It can 
be easily seen from Ref. [24] that if the flow effects 
are taken into account, the chemical potential is 
modified as 

0.95≈

 
( ) / ,s n s p s s C s sN Z B E s P nμ μ μ= + − − +       (26) 

 

where /s sP n D As
αε= ⋅ . For 1α = , the fragment 

multiplicities remain unaltered with or without flow; 
only the chemical potentials get renormalized. Using 
Eq. (17) the expression for the free neutron density 
is modified as 
 

3/2

3
1

2
1

A
n

A T

A gn
A g λ+

⎛ ⎞= ⋅ ⋅⎜ ⎟+⎝ ⎠
×  

 

( )exp ( ( , ) ( 1, )) /B A Z B A Z T× − + ×  
 

( )exp ( ( , ) ( 1, )) /C CE A Z E A Z T× − − + ×  
 

( ) 1exp (( 1) 1) / ,D A A T Rα αε× − + − − ⋅       (27) 
 
where 1 ( 1, ) / ( , )R Y A Z Y A Z= +  is the (single) ratio 
between the yields of two fragments differing by one 
neutron. Also, Eq. (22) for the double ratio is 
modified as 
 

1 1 1 1
2

2 2 2 2

( , ) / ( , )
( , ) / ( , )

Y A Z Y A ZR
Y A Z Y A Z

′ ′
=

′ ′
=  

 
3/2

1 2 1 1 2 2

1 2 1 1 2 2

( , , ) ( , , )
( , , ) ( , , )

A A A Z T A Z T
A A A Z T A Z T

ω ω
ω ω

⎛ ′ ⎞ ′ ′⋅
= ×⎜ ⎟′ ′ ′⋅⎝ ⎠

 

 

( ) ( ) ( )exp / exp / exp / ,CB T E T F× Δ ⋅ −Δ ⋅ Δ T  (28) 
 
where FΔ  is given as 
 

1 1 2 2(F D A A A Aα α α αε ′Δ = − + − ) ,′            (29) 
 
with , , etc. defined through Eq. (21).  1A′ 2A′

Since (1 )α−  is very small, the last exponential 
in Eq. (27) can be very well approximated by 

 

( )exp (( 1) 1) /D A A Tα αε− + − − ≈  
 

( )exp (1 )(1 ln ) / .D A Tε α≈ − +               (30) 
 
We thus have that the neutron density is increased 
by this factor, which is larger for smaller 
temperature, heavier isotopes and larger flow 
energy. For example, from the yield ratio of, 
4He/3He at  MeV, 4.0T ≈ 0.95α ≈ , 10.0ε ≈  MeV, 

one finds that the neutron density is increased by a 
factor of almost 4, and thus the freeze-out volume is 
decreased by the same factor. With the inclusion of 
this correction (Eq. (30)), one finds that the freeze-
out volume is 08V≈  which is closer to the values 
usually taken in macrocanonical calculations [14, 
20] of nuclear multifragmentation. We note that the 
extracted values of temperature can be modified, 
depending on the value of FΔ . Considering, for 
example, the He-Li thermometer, one has from 
Eq. (29) that 0.F 11εΔ ≈ , compared to the value of 

13.32BΔ ≈  MeV. With 10ε ≈
≈

 MeV, using 
Eq. (28), an increase in T  of  10 % is obtained. 
Similar results are found for other thermometers. 
 

Post emission decay 
 

In deriving Eq. (19) it was assumed that ground 
state populations are the experimentally observed 
fragment yields. A possible feeding of the ground 
state populations through particle- and γ -decay of 
excited fragments which takes place after fragments 
leave the source (i.e., the freeze-out volume) is, thus, 
ignored. In order to take into account the feeding 
into the ground state by γ -decay, Eq. (19) should be 
replaced by Eq. (22) where the sum in Eq. (12) 
extends over the ground state and all γ -decaying 
states with excitation energy (i ,A Z )ε  and angular 
momentum  of the fragment  below the 
particle-decay threshold energy. 

iI ( , )A Z

In Ref. [8], the effect of particle-decay of primary 
fragments emitted from the freeze-out surface on the 
yields of fragments detected in experiment was 
taken into account in a similar way. The populations 
of particle-decaying excited states, calculated in the 
framework of the statistical model with chemical 
equilibrium, were also added to the ground state 
population of the corresponding product fragment, 
taking into account only nucleon- and α -decay and 
neglecting multiple-step feeding. Under these 
assumptions, for a given set of experimental yields 
of four fragments, one double ratio and two single 
ratios can be constructed and a system of three 
independent equations is derived. This system of 
equations can be solved by iteration to determine the 
temperature  and chemical potentials T pμ  and nμ . 
Following Refs. [26, 27], only the dominant decay 
mode for all excited states was considered. For a 
specific fragment, the dominant decay mode was 
taken to be the one with the lowest -value among 
proton-, neutron- and 

Q
α -decay modes. The data for 

the lowest particle-decaying excited states that enter 
Eq. (12) were taken from Refs. [28] and [29]. 
Contributions from states with higher excitation 
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energies were found in terms of the effective level 
density , see Ref. [26] for details.  eff ( , )A Zρ

The important effect of the γ -decay feeding is 
nicely demonstrated in Fig. 1. Ratios of isotope 
yields of fragments from helium through carbon 
produced in near central collisions from the 
reactions 40Ca + 58Ni, 40Ar + 58Ni, 40Ca + 58Fe, and 
40Ar + 58Fe at 33 MeV/nucleon projectile energy, 
taken from Ref. [30], were used to extract nuclear 
temperatures for the emission zone. It is seen from 
Fig. 1 that with the inclusion of the correction due to 
post emission decay, the values obtained for the 
temperature are consistent over various 
isotope/isotone pairs. The extracted temperature is 
consistent with values obtained from isotope yields 
and from relative yields of excited state populations 
in other measurements. The values of temperature 
for several combinations of fragment yields obtained 
with the combined γ - and particle decay feeding are 
very similar to those obtained by taking into account 
the γ - decay. 

 

 
Isotope pairs 

 
Fig. 1. Temperature extracted from double ratios of: a -
 4He/3He, 7Li/6Li; b - 4He/3He, 10Be/9Be; c - 4He/3He, 
11B/10B; d - 4He/3He, 13C/12C; e - 7Li/6Li, 12C/11C; 
f - 12C/11C, 13C/12C; g - 7Be/6Li, 12C/11B yield ratios for the 
reactions 40Ca + 58Ni (filled circles), 40Ar + 58Ni (open 
circles), 40Ca + 58Fe (filled squares), and 40Ar + 58Fe (open 
squares) at beam energies o 33 MeV/nucleon before (top) 
and after (bottom) accounting for poppulations of 
γ -decaying states (taken from Ref [8]). 

Medium effects 
 

Starting from the nuclear spectral function, an 
effective wave equation for an A-nucleon cluster 
embedded in hot low density nuclear matter can be 
derived [31]. The A-particle wave function and the 
corresponding eigenvalue are obtained by solving 
the in-medium Schrödinger equation  

 

[ (1) ( ) ( )] (1 )qu qu qu
A p A pE E A E p Aν νψ+ + − … +  

 

1 ,

[1 ( ) ( )] ( , ) (1 ) 0 .kk A p
A i j k i j

f i f j V ij i j Aνδ ψ′
′ ′ < ≠

′ ′ ′ ′+ − − =∑∑ ∏
…

…

(31) 
This equation contains the effects of the medium in 
the single-nucleon quasiparticle energies, ,as 
well as in the Pauli blocking terms, 

( )quE i

( )f i . It can be 
shown that the EoS can be evaluated as in the non-
interacting case, except that the number densities of 
clusters must be calculated with the quasiparticle 
energies , quE
 

3

, , ,3( , ) [ ( )] .
(2 )

qu qu
A Z A Z A Z

d pn A Z g f E p
π

= ∫           (32) 

 
In the cluster-quasiparticle approximation, the EoS 
reads, 
 

,

( , , ) ( , ) ,qu qu
p p n

A Z

n T Zn A Zμ μ =∑              (33) 

 

,

( , , ) ( ) ( , ) ,qu qu
n p n

A Z

n T A Z n A Zμ μ = −∑       (34) 

 
for the total proton and neutron densities, respectively.  
 

 

 

 
nB, fm-3 

 

Fig. 2. The ratio between the ACCR baryon density (a)
Bn  

(no medium effects) and  (including medium effects) as 
a function of the baryon density 

n
B p nn n n= +  for various 

values of T  (taken from Ref. [9]). 

T,
 M

eV
 

nB
(a)/nB 
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Comparing the values of the parameters obtained 
in the full calculation, with inclusion of medium 
effects on the yields with those deduced in the 
ACCR approach, we find [9] that moderate 
deviations in the temperature arise for densities 
larger than 0.0001 fm-3. However, it is seen from 
Fig. 2 that determination of the densities is more 
sensitive to the medium effects. 
 

Conclusions 
 

Analysis of heavy-ion collision experiments 
indicates that hot nuclei exhibit the phenomena of 
multifragmentation and the saturation of the caloric 
curve. We emphasize that the main difficulty in the 
interpretation of experimental data is the separation 
between the dynamic and the statistical effects. 
Theoretical description of hot nuclei is very 
challenging since the nucleus is a finite two-
component system of constituents interacting with a 
short range strong interaction and a long range 
Coulomb interaction. In this review we limit the 
discussion to the description of the properties of hot 
nuclei, assuming the existence of thermal 
equilibrium in a certain freeze out volume. We have 
concentrated on the determination of the temperature 
and density by employing extensions of the method 
proposed by ACCR [1]. The ACCR method is based 
on the evaluation of the double ratios 2R  of the 
yields of the emitted fragments and depends 
essentially on the existence of both thermal 
equilibrium and chemical equilibrium in the 
decaying system. We have derived a relation 
between the temperature T  and 2R  of fragment 

yields, which is similar to the ACCR method, taking 
into account the effect of the long range Coulomb 
interaction and only impose the condition of thermal 
equilibrium. We have also extend of the method in 
order to account for the effect of radial flow and the 
effect of the population of excited states that  
γ -decay to the ground state. It was shown that with 
these modifications of the ACCR method one 
obtains a reasonable value for the freeze-out volume 
and extract the same transition temperature using 
different thermometers (double yields ratios).  

We have also considered the effects of medium on 
the binding energies of clusters embedded in hot low 
density nuclear matter. We note that a simple 
statistical model neglecting all medium effects, i.e., 
treating it as an ideal mixture of non-interacting 
nuclei, is not applicable for determining the yields of 
different clusters when the density is larger than 
0.0001 fm-3. The success of the simple ACCR method 
to determine the values for the temperature can be 
understood from a partial compensation of the effect 
of the energy shifts of the in medium clusters so that 
reasonable values for the temperature are obtained 
also at relatively high densities. More care must be 
taken in inferring densities from the data.  
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ВЛАСТИВОСТІ  НАГРІТОЇ  ЯДЕРНОЇ  МАТЕРІЇ  В  ЗІТКНЕННЯХ  ВАЖКИХ  ІОНІВ 

 
Ш. Шломо 

 
Вивчення властивостей ядер в умовах з екстремальною температурою та густиною було предметом багатьох 

досліджень останніх десятиліть завдяки важливості вивчення процесів у наднових нейтронних зірках і ядрах. 
Для отримання цих властивостей часто використовують зіткнення важких іонів. Ми подаємо обмежений огляд 
статусу теоретичних та експериментальних досліджень по визначенню температури і густини нагрітого 
фрагментуючого ядра виходячи з відношень виходів емітованих фрагментів. 

Ключові слова: гарячі ядра, фрагментація ядер, фазовий перехід. 
 

СВОЙСТВА  НАГРЕТОЙ  ЯДЕРНОЙ  МАТЕРИИ  В  СТОЛКНОВЕНИЯХ  ТЯЖЕЛЫХ  ИОНОВ 
 

Ш. Шломо 
 

Изучение свойств ядер в условиях с экстремальной температурой и плотностью было предметом многих 
исследований последних десятилетий благодаря важности изучения процессов в сверхновых нейтронных 
звездах и ядрах. Для определения этих свойств часто используют столкновения тяжелых ионов. Мы 
представляем краткий обзор статуса теоретических и экспериментальных исследований по получению 
температуры и плотности нагретого фрагментирующего ядра исходя из отношений выходов испускаемых 
фрагментов. 

Ключевые слова: горячие ядра, фрагментация ядер, фазовый переход. 
 

Received 07.06.10, 
revised - 16.12.10. 

354                                                                                         NUCLEAR  PHYSICS  AND  ATOMIC  ENERGY   Vol. 11,  No. 4   2010 


