Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2010, volume 11, issue 4, pages 335-340.
Section: Nuclear Physics.
Received: 07.06.2010; Published online: 30.12.2010.
PDF Full text (en)
https://doi.org/10.15407/jnpae2010.04.335

Giant neutron halo in nuclei beyond beta-stability line

V. M. Kolomietz, S. V. Lukyanov, A. I. Sanzhur

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract: The radii of nucleon distribution and neutron skin in nuclei beyond the β-stability line are studied within the extended Thomas-Fermi approximation. We show that the growth of neutron skin in unstable nuclei does not obey the saturation condition because of the neutron coat. The neutron coat indicates the possibility of giant neutron halo which is growing with moving away from the beta-stability line. We demonstrate the presence of strong shell oscillations in the charge radius RÑ and the relation of RÑ to the isospin shift of neutron-proton chemical potentials Δλ = λn - λp for nuclei beyond the beta-stability line at fixed value of mass number A.

Keywords: extended Thomas-Fermi approximation, Skyrme force, beta-stability line, giant neutron halo.

References:

1. Meng J., Toki H., Zeng J. Y. et al. Giant halo at the neutron dripline in Ca isotopes in relativistic continuum Hartree-Bogoliubov theory. Phys. Rev. C 65 (2002) 041302(R). https://doi.org/10.1103/PhysRevC.65.041302

2. Hohenberg P., Kohn W. Inhomogeneous Electron Gas. Phys. Rev. 136 (1964) B864. https://doi.org/10.1103/PhysRev.136.B864

3. Kirzhnitz D. A. Field Theoretical Methods in Many-Body Systems (London: Pergamon Press Ltd., 1967). https://doi.org/10.1119/1.1973823

4. Kolomietz V. M. Local Density Approach for Atomic and Nuclear Physics (Kyiv: Naukova Dumka, 1990) (Rus).

5. Kolomietz V. M., Sanzhur A. I. Equation of state and symmetry energy within the stability valley. Eur. Phys. J. A 38 (2008) 345. https://doi.org/10.1140/epja/i2008-10679-1

6. Oyamatsu K., Tanichata I., Sugahara S. et al. Can the equation of state of asymmetric nuclear matter be studied using unstable nuclei? Nucl. Phys. A 634 (1998) 3. https://doi.org/10.1016/S0375-9474(98)00125-0

7. Oyamatsu K., Iida K. Saturation of Nuclear Matter and Radii of Unstable Nuclei. Progr. Theor. Phys. 109 (2003) 631. https://doi.org/10.1143/PTP.109.631

8. Brown A. Neutron Radii in Nuclei and the Neutron Equation of State. Phys. Rev. Lett. 85 (2001) 5296. https://doi.org/10.1103/PhysRevLett.85.5296

9. Suzuki T., Geissel H., Bochkarev O. et al. Neutron Skin of Na Isotopes Studied via Their Interaction Cross Sections. Phys. Rev. Lett. 75 (1995) 3241. https://doi.org/10.1103/PhysRevLett.75.3241

10. Audi G., Wapstra A. H., Thibault C. The Ame2003 atomic mass evaluation: (II). Tables, graphs and references. Nuclear Physics A 729 (2003) 337. https://doi.org/10.1016/j.nuclphysa.2003.11.003

11. Kolomietz V. M., Sanzhur A. I. New derivation of the symmetry energy for nuclei beyond the β-stability line. Phys. Rev. C 81 (2002) 024324. https://doi.org/10.1103/PhysRevC.81.024324