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GIANT NEUTRON HALO IN NUCLEI BEYOND BETA-STABILITY LINE
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The radii of nucleon distribution and neutron skin in nuclei beyond the B-stability line are studied within the
extended Thomas - Fermi approximation. We show that the growth of neutron skin in unstable nuclei does not obey the
saturation condition because of the neutron coat. The neutron coat indicates the possibility of giant neutron halo which
is growing with moving away from the beta-stability line. We demonstrate the presence of strong shell oscillations in
the charge radius R and the relation of R to the isospin shift of neutron-proton chemical potentials AA=4, -4, for

nuclei beyond the beta-stability line at fixed value of mass number 4.
Keywords: extended Thomas - Fermi approximation, Skyrme force, beta-stability line, giant neutron halo.

Introduction

In the vicinity of the beta-stability line, the average
changes in binding energy E and nuclear radius R
with nucleon content obey the saturation properties.
The volume part E,, of binding energy and the
nuclear volume itself are proportional to the particle
number 4 with E,, =—b,4 and R=rA", where

b, >0 and r, are constants. Both values of b, and

r, depend, however, on the isotopic asymmetry
parameter X =(N —-Z)/(N +Z). This dependence
comes from the difference in saturation bulk density,
P, ~ 15>, for nuclei with different values of X . The
saturation density p, becomes smaller beyond the

beta-stability line for neutron-rich nuclei where more
neutrons are pushed off to form the "neutron coat".
One can expect that the growth of neutron skin in
neutron-rich nuclei violates the saturation property
R~ A" for the nuclear radius providing an existence
of neutron halo (giant neutron halo) effect [1].

In this paper we study the deviation of neutron
distribution from the saturation behavior in neutron-
rich nuclei. We study the influence of spin-orbit and

Coulomb forces on the neutron, |, [<r;,2> , and proton,

1/<rpz> , root mean square radii as well as the relation

of the shift \/<_r,,7> —M to the surface symmetry

energy. We study the problems related to the
nucleon redistribution within the surface region of
the nucleus and, in particular, the neutron coat and
the neutron excess for the nuclei beyond the beta-
stability line.

We combine the extended Thomas-Fermi
approximation (ETFA) and the direct variational
method assuming that the proton and neutron
distributions are sharp enough, i.e., that the
corresponding densities p,(r) and p,(r) fall from
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their bulk values to zero within a thin surface region.
In our consideration, the thin-skinned densities
p,(r) and p (r) are generated by the profile

functions which are eliminated by the requirement
that the energy of the nucleus should be stationary
with respect to variations of these profiles.

Direct variational approach

We will use the extended Thomas-Fermi
approximation (ETFA) which is one of practical
realization of general Hohenberg - Kohn theorem [2]
on the unique functional relation between the ground
state energy and the local density of particles for any
fermion system. The total kinetic energy of the
many-body fermion system is given by the
semiclassical expression [3, 4] as follows

(0,0} = Ep,, VP, = [ dr £, 0,1, p,(0)],
(D

Where gkin [pn ’pp] = gkin,n [pn] + gkin,p [pp ]’ and

2 2
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gkin,q[pq’ qu] =

Here p, is the nucleon density with g=n for

neutron and g = p for proton.

We will follow the concept of effective nucleon- .
nucleon interaction using the Skyrme-type force.
The total energy functional for charged nucleus is
given by

Elat{pq’qu} = Ekin{pq’qu}+ESK{pq’qu}+EC'{pp}’

)
where E, {p,,Vp,} is the potential energy of

NN -interaction

Eglp,Vp}=[dr £,,[p,@),p,0], ()
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€[ 0,(r), p,(1)] is the potential energy density and
E.{p,} is the Coulomb energy. The potential

energy (3) also includes the energy of spin-orbit
interaction. Considering the asymmetric nuclei with
X =(N-2Z)/ A< 1, we will introduce the isotopic
densities, namely the total density
and the neutron excess density

particle
P=Put P,
p.=p,—p, wWith p. < p, . We apply the direct
variational method [5] and assume the density
profile functions p, (r) and p_(r) to be a power of
the Fermi function as

pP.(N)=pf(r), p.(r)=pf (r)——Po

Here, f(r)= I:l +exp[(r—R)/ a]]_",
and p, are related to the bulk density, R is the
nuclear radius, a is the diffuseness parameter and
A is the parameter of neutron skin (see below). The
profile functions o, (r) and p_(r) have to obey the
condition of the neutron and proton number
conservation. For the ground state of nucleus, the
unknown parameters p,,,R,a,A,n7 and the total

the values p,

energy E,, itself can be derived from the variational

principle

S(E-AN-2,7)=0, (5)

where the variation with respect to all possible small
changes of p,,,R,a,A and 7 is assumed. The

Lagrange multipliers 4, and A, are the chemical

potentials for neutrons and protons respectively, and
both of them are fixed by the condition of particle
number conservation.

As mentioned above, the parameter A in profile
functions of Eq. (4) is related to the neutron skin. It
can be easily seen from the derivation of the rms
radii of the neutron and proton density distributions

i) =\Jarr o, p, 0. ©

Using Eqgs. (6) and (4) one obtains the size of the
neutron skin
-7
3
z\/giz(ﬂ—é— X2j+0 (1) . (D
S1-X 2R1-X R

Note that the evaluation of the variational conditions
leads to an additional dependence of the variational
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parameters p,,,R,a,A and 7 on the external

parameters 4 and X. The value of A disappears in
symmetric nuclei at X =0 and depends slightly on
the Skyrme force parametrization. In case of the
SkM forces we have numerically calculated the
dependence of A on X for 4 = 120 and fitted it by
the following formula

AX)=~ 090X +1.47X>. (8)

The parameter A is also related to the number,

Ny, of neutrons in surface region of the nucleus
("neutron coat"). Substituting Eqgs. (4) into condition
of the particle conservation and using the
leptodermous expansion, we obtain for the neutron
excess N —Z the following expression

N-Z=~N,+N;, 9)

where

4r a at
N, = TR3(1+3K0(77)E+6K1(’7)F)p1,

—47:R2(1+21c0(77) + 2, ()2 )’;‘)A

and «,(7) are the generalized Fermi integrals

derived in Ref. [5]. The first term N, ~ R’ on the
right hand side of Eq. (9) is due to redistribution of
the neutron excess within the nuclear volume while

the second one Ny~ R’ is the number of neutrons

within neutron coat. In Fig. 1 we have plotted N
for neutron-rich nuclei in the vicinity of Sn nucleus
(Z =50) (solid line). Two additional lines show the
influence of the spin-orbit and the Coulomb forces
on the neutron coat Nj.

In general, the change of the radius R of nucleon
distribution with the nucleon number A4 is caused by
two factors. There is a simple geometrical change
Roc A . An additional change can occur due to the
polarization effect (the bulk density distortion) with
moving away from the beta-stability line. In
particular, the size of neutron skin is sensitive to the
symmetry and the Coulomb energies. We expand the
total energy E, (p,,X)/ A around the saturation

density p,,, and the isotopic asymmetry parameter
X" on the beta-stability line as

E,(p,X)/ A= ,,,,(,DOeq,X Y A+

2
18,0/; (po - pO,eq) +

0,eq

~Poey) s (10)

O,eq
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where K, is the incompressibility of finite nucleus
, O°E,(p, X"/ 4

K, =9p;. > an
’ apo IA sP0=P0,eq
0
2
P A~ p 0,eq 5/;0—
where b, ,,(p,) and b, (p,) are the volume and
the  surface  symmetry  coefficients  and
ac(p)=3e*120(47p,/3)"".  As seen from

Eq. (10), the deviation from the beta-stability line
(X # X") implies the change in the bulk density p, .
The corresponding change is dependent on the
incompressibility K, and the partial pressure P,.
For an arbitrary fixed value of X, the equilibrium
density p, , is derived by the condition

0.

o (13)

w(Po, X) 1 4

Apo=po x
25
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Fig. 1. Ng for neutron-rich nuclei in the vicinity of Sn
(Z = 50) (solid line). The dotted and dashed lines show
the influence of the spin-orbit and the Coulomb forces on
the neutron coat Ngs. The arrow shows the position of Sn
nucleus on the B-stability line.

Using Eqs. (10) and (13), we obtain the
expression for the shift of bulk density (polarization
effect) in the neutron rich nuclei

u

P *
Pox = Poq *9K—”(X—X ). (14

A
The equilibrium partial pressure P, is positive and
thereby p, , < p,,, > see also Refs. [6, 7). We point

out that in general the sign of the equilibrium partial
pressure P, depends on the Skyrme force

parametrization and this fact can be used for the
Skyrme force selection [8].
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- |
[bV,sym (,00) + bS,.)ym (po)A 3 _ o, (po )Az/3 }! ,
A

and P, is the partial pressure related to the
symmetry and the Coulomb energies

(12)

) =P0,eq
Radii of nucleon distributions and neutron skin

As noted above, the bulk density p, , is smaller

for neutron-rich nuclei, more neutrons should be
pushed off to enrich the skin providing the

of

neutron distribution does not necessarily obey the

polarization effect. Thus, the rms radius ,/( n,2>

saturation condition ,/(r’} ~ 4" . As a consequence,
n

the nuclei with significant excess of neutrons exhibit
neutron skin, i.e., they are characterized by larger
radii for the neutron than for proton distributions.
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Fig. 2. The rms neutron radii beyond the beta-stability
line for spherically symmetric nuclei **Na, “’Ca, °'Zr and
208

Pb.
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The neutron coat N; (see also Fig. 1) indicates

the possibility of giant neutron halo which is
growing with moving away from the beta-stability
line [1]. In Fig. 2 we have plotted the rms radii of
neutron distribution from Eq. (6) as a function of 4.

The deviation of , /(/;;,2> from the saturation behavior

~ A", obtained for the spherically symmetric
nuclei, demonstrates the appearance of giant neutron
halo when approaching the drip line. To extract a
simple geometrical change of the radii we have
made calculations with a step neutron distribution
P.(r)=p,,O(r—R,), where the radius of the

saturation behavior
The results of the calculations are

neutron distribution has

R" ___’b)"Al/J .
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shown in Fig. 2 by the solid lines. As one can see
from Fig. 2 the solid lines are very close to the beta-
stability line. The difference between the dash-
dotted and solid lines gives the value of the
polarization effect.
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Fig. 3. The rms radius of neutron distribution
in Na isotopes.

An occurrence of the giant halo in Na isotopes is
shown in Fig. 3. We can see from this figure that the
ETFA results agree quite well with the experimental

data from [9]. The sensitivity of , /<r,,2> calculation of
to the choice of the Skyrme force can be also seen.

The results for the charge radius < rlf> are

shown in Fig. 4. The rms radius <rpz> of proton

distribution indicates the non-monotonic behavior
due to the shell effects. Such behavior of 1/<rlf >

correlates with 4 -dependence of the Coulomb
radius R.. To derive R. we use E, (p,, X) on the
beta-stability line and establish an important relation
for the chemical potentials A, (g=n for neutron

and g = p for proton) beyond the beta-stability line.
Namely, for fixed 4, we obtain

A(X)=4, -4, =5} OB BT
oN|, 0zZ|, ax |,
=4[b;ym(A)+e;(A)](X—X'), (15)
Where b:ym (A) = bl:,sym (po,eq) + b;‘,xym (pO,eq )‘A_l/3 >
er(4)=0.154¢* /R, (16)
and
/1,,=(6—E], A =(6—E) . (17)
N ), * \oz),
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Fig. 4. The rms radius of proton distribution
in Na isotopes.

On the beta-stability line, one has from Eq. (15)
that AA(X), ..=0, as it has to be from the

definition of the beta-stability line. We point out that
for finite nuclei, the condition A4 =0 on the beta-
stability line is not necessarily fulfilled exactly
because of the discrete spectrum of single particle
levels for both the neutrons and the protons near
Fermi surface. In agreement with Eq. (15), the
slopes of straight lines AA(X) allow us to derive

the quantity b, (A4)+e.(A). From the beta-stability

sym
condition AA(X)=0 one can also derive the
asymmetry parameter X (A4). Using the definition
of the beta-stability line as

aEwl(pO’X)/A

=0,
oX

AX=X"

we obtain the symmetry energy coefficient b, (4)

and Coulomb energy parameter e.(A). Finally,

using Eq. (16), we obtain the A -dependence of the
Coulomb radius R.(A4).
The quantity 0(E/ A)/8X in Eq. (15) can be

evaluated within the accuracy ~1/4° using the
finite differences which are based on the
experimental values of the binding energy per
nucleon B(N,Z)=—-E(N,Z)/ A. Namely,

AEIA) _Arpon_ _ _
e A—4[B(N LZ+1)-B(N +1,Z-1)].

(18)
Since the difference (18) is taken for AZ =-AN =2,
the pairing effects do not affect the resulting
accuracy. Because of Eq. (16), this procedure allows
us to derive the "experimental" value of the
Coulomb radius R.(A4). The A-dependence of the

NUCLEAR PHYSICS AND ATOMIC ENERGY Vol. 11, No.4 2010



GIANT NEUTRON HALO

“experimental” Coulomb radius R:(4), extracted
from the experimental data [10], along the beta-
stability line is presented in Fig. 5. The deviation of
the Coulomb radius R:(A4) from the smooth
A-dependence is mainly due to the shell
oscillations. We point out that the shell oscillations
in R.(4) are correlated with the ones in

A -dependence of the symmetry energy [11].

10

SLy230b
127 A

0 . . . ,
0 50 100 150 200 250

A
Fig. 5. The A-dependence of "experimental" Coulomb
radius extracted from the experimental data [10].

04—

Fig. 6 Isovector shift of nuclear radius
for Na isotopes.

The size of the neutron skin \/@—M is

illustrated in Fig. 6. The line has been obtained from
Eq. (7), and the experimental data were taken from
Ref. [9]. As seen from Fig. 6, the skin size

,/<r;,2>—,/<r;> is primarily linear with the

asymmetry parameter X .
Summary

We have applied the direct variational method
within the extended Thomas-Fermi approximation
with effective Skyrme-like forces to the description
of the radii of nucleon distributions. In our
consideration, the thin-skinned nucleon densities
p,(r) and p,(r) are generated by the profile

functions which are eliminated by the requirement
for the energy of the nucleus to be stationary with
respect to variations of these profiles. The advantage
of the direct variational method is the possibility to
derive the equation of state for finite nuclei:
dependence of the binding energy per particle or the
pressure on the bulk density p,. We have evaluated

the partial pressure P, which

contributions from the symmetry and the Coulomb
energies. The pressure P, is positive driving off the

includes the

neutrons in neutron-rich nuclei to the skin.
Using the leptodermous properties of the nucleon
densities p,(r) and p,(r), we have established the

possibility of giant neutron halo in neutron-rich
nuclei. The effect of giant halo increases with
moving away from the beta-stability line. In Fig. 2
this fact is demonstrated as deviation of the rms radii
of neutron distribution from the saturation behavior
~ A" in the nuclei beyond the beta-stability line.
The average behavior of the rms radii of nucleon

distributions <rq2 ) and the size of neutron skin are

satisfactorily described within the extended Thomas-
Fermi approximation. The sensitivity of the
calculations of <rqz> to force parametrization can
be used for Skyrme force selection. The charge
radius of proton distribution shows the strong shell
oscillations with mass number. We have
demonstrated the relation of the Coulomb radius to
the isospin shift of the neutron-proton chemical
potentials AA=4, -4, for nuclei beyond the beta-

stability line at fixed value of mass number 4.
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TITAHTCBKE HEMTPOHHE TAJIO B AAPAX ITO3A JIIHIEIO BETA-CTABUIBHOCTI
B. M. Konomieup, C. B. JIlyk'siHoB, A. I Canxyp

Y pamkax poswrHpeHoro Habnwkennsa Tomaca - QepMmi J0CITIIKEHO paiyc HyKJIOHHOTO PO3MOLINY Ta HEHTPOHHOT
WKIipY B siApaX Mo3a JiHieio Gera-cTaGinbHocTi. [Moka3aHo, MO BHACIINOK HASBHOCTI HEHTPOHHOI WyGHM 3pOCTaHHS
HEHTPOHHOT WKipH B HECTAGLIBHAX S1PAx He 32[0BOJIbHAE YMOBi HacHueHHA. HeifTpoHHa 1y6a BKa3ye Ha MOXTHBICTH
ICHYBaHHs TiraHTCHKOTO HEHTPOHHOrO rajg0 B sIpaX, sKe 3pOCTAE€ NpPM BifjaneHi Bix JiHil 6eTa-cTaGiibHOCTI.
TIponeMOHCTPOBAHO HASBHICTh CHIBHMX OGOJOHKOBMX OCUMIALIH 3apagoBoro pamiyca R. Ta 3B'a30k R. 3
i30CNiHOBHM 3CYBOM HEHTPOHHO-NIPOTOHHMX XiMIYHHX IIOTEHL{asiB AA=4,—-A, mna anep mosa miHielo Gera-
cTaGUIbHOCTI 3 PiKCOBAHHM MACOBUM YHCIOM A.

Kmiouosi cnosa: posmmpene HabmmxenHs Tomaca - ®epmi, cunu Ckipma, miHis 6eTta-cTabiNnbHOCTI, riraHTChHKE
HEWTPOHHE rao.

TUTAHTCKOE HEMTPOHHOE TAJIO B SIIPAX BJAJIHA OT JIMHUM BETA-CTABUJIbHOCTH
B. M. Kosnomuen, C. B. JIlykbsnos, A. U. Canxyp

B pamkax pacuupentoro npubmmxenns Tomaca - ®epMn HCCIIEA0BaHbI PafiMychl HYKIOHHOTO PacnpeieieHus 1
HEHTPOHHOH KOXM B siipaX BAamM OT juHMM GeTa-cTaGmiubHOCTH. ITOKa3aHO, YTO BCNEACTBHE CYLIECTBOBAHMUS
HEHTPOHHOM 11yGbl BO3POCTAaHHE HEHTPOHHON KOKH B HECTAGH/IbHBIX AAPAX HE YHOBIETBOPSET YCIOBHIO HACHIIECHHA.
HelitponHas mryGa ykassiBaeT Ha BO3MOXHOCTh CYHIECTBOBAHHMS [MIAHTCKOTO a0 B AApaX, KOTOPOE YBeTUIHBAETCS
Tpy ylaleHud OT auHuM OGeTa-cTabriIbHOCTH. IIpOJEMOHCTPHPOBAHO CYIIECTBOBAHHE CHIBHBLIX OGONOUEHHBIX
OCUWUIAUMK 3apANOBOro pajuyca R. M CBA3b R. C H30CIHHOBBIM CIBUIOM HEHTPOHHO-NPOTOHHBIX XHMHYECKHX

NOTeHIMAN0B AA = A, — A, 1ns sjep BAANH OT IMHIK 6€Ta-CTabUILHOCTH ¢ PUKCHPOBAHHBIM MACOBBIM YHCIOM A .

Kntouesvie cnosa: pacmmpenHoe npubiamkenue Tomaca - (DepMu, Cuibl Cxupma, nuHUs Gera-CTaGHILHOCTH,
THTAHTCKOE HEWTPOHHOE rajio.
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