![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Nuclear burning wave reactor: wave parameter control
V. M. Pavlovich1, V. M. Khotyayintsev2, O. M. Khotyayintseva1
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Kyiv Taras Shevchenko National University, Kyiv, Ukraine
Abstract: The purpose is to find the ways to regulate parameters of the stationary wave in the nuclear burning wave reactor changing its initial composition. One-dimensional model of an infinite reactor is used in one-group approximation. We show that the wave velocity can be regulated within wide range due to the tuning of the initial absorber concentration or of the side neutron leakage. 20 - 30 % increase of the final fluence and of the depth of fuel burnup is achieved due to the use of absorber which burns out. Final fluence decreases substantially if fuel is enriched with fissile nuclides which are 239Pu or 235U for fuel on the basis of 238U. Enriching leads to considerable expansion of the range of absorber concentrations for which the stationary wave exists. Qualitative analysis based on analytical theory confirms the general character of these results obtained by means of numeral calculations. The stationary wave also exists in the media corresponding to a spent reactor fuel though the range of possible absorber concentrations is reduced, comparing to 238U fuel.
Keywords: nuclear burning wave, inner safety, fast reactor, one-group approximation.
References:1. Феоктистов Л. П. Нейтронно-делительная волна. Докл. Акад. наук СССР 309 (1989) 864.
2. Sekimoto H., Ryu К., Yoshimura Y. CANDLE: The New Burnup Strategy. Nuclear Sciense and Engineering 139 (2001) 306. https://doi.org/10.13182/NSE01-01
3. Teller E., Ishikava M., Wood, L. Completely automated nuclear reactors for long-term operation. Proc. ICENES’96, Obninsk, Russia, June 24 - 28, 1996 (Obninsk, 1996) p. 151.
4. Hyde R., Ishikawa M., Myhrvold N. et al. Nuclear fission power for 21st century needs: Enabling technologies for large-scale, low-risk, affordable nuclear electricity. Progress in Nuclear Energy 50 (2008) 82. https://doi.org/10.1016/j.pnucene.2007.10.027
5. Павлович В. Н., Хотяинцев В. Н., Хотяинцева Е. Н. Физические основы реактора на волне ядерного горения. I. Ядерна фізика та енергетика 9 (2008) 39. https://jnpae.kinr.kyiv.ua/24(2)/Articles_PDF/jnpae-2008-2(24)-0039-Pavlovych.pdf
6. Павлович В. Н., Хотяинцев В. Н., Хотяинцева Е. Н. Физические основы реактора на волне ядерного горения. ІІ. Конкретные модели. Ядерна фізика та енергетика 9 (2008) 62. https://jnpae.kinr.kyiv.ua/25(3)/Articles_PDF/jnpae-2008-3(25)-0062-Pavlovych.pdf
7. Fomin S., Mel’nik Yu., Pilipenko V., Shul’ga N. Initiation and propagation of nuclear burning wave in fast reactor. Progress in Nuclear Energy 50 (2008) 163. https://doi.org/10.1016/j.pnucene.2007.10.020
8. Ismail Yasunori Ohoka, Peng Hong Liem, Hiroshi Sekimoto. Long life small CANDLE-HTGRs with thorium. Annals of Nuclear Energy 34 (2007) 120. https://doi.org/10.1016/j.anucene.2006.10.006
9. Walter A. E., Reynolds A. B. Fast Breeder Reactors (New York: Pergamon Press, 1981).
10. Воропаев А. Е., Возяков В. В., Зинин А. И., Цикунов А. Г. Сравнение одногрупповых констант актиноидов в тестовой модели быстрого реактора. Атомная энергия 54 (1983) 214.
11. Герасимов А. С., Зарицкая Т. С., Рудик А. П. Справочник по образованию нуклидов в ядерных реакторах (Москва: Энергоатомиздат, 1989).