![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Particle tunneling and scattering in a three-dimensional potential with a hard core and an external potential barrier
V. S. Olkhovsky, M. V. Romaniuk
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: The non-relativistic particle tunneling and scattering through a spherical three-dimensional potential barrier (either rectangular, or Coulomb repulsion), containing a spherical potential rectangular well with a hard core inside, had been studied. The explicit analytical expressions for the S-matrix of elastic scattering and all probability amplitudes (external and internal reflections, tunneling inside and tunneling outside) for zero angular momentum and for relations between them had been firstly obtained. In conclusion, unlike to the typical simplified one-dimensional approximation, utilized for low-energy astrophysical nuclear-fusion reactions, we underline the necessity to consider the three-dimensional picture which brings to the multiple internal reflections from internal barrier wall and also to the more strict penetration factor.
Keywords: three-dimensional tunneling, scattering, barrier, potential well, hard core.
References:1. Olkhovsky V. S., Recami E. Recent developments in the time analysis of tunneling processes. Phys. Rep. 214 (1992) 339. https://doi.org/10.1016/0370-1573(92)90015-R
2. Olkhovsky V. S., Recami E., Jakiel J. Unified time analysis of photon and particle tunnelling. Phys. Rep. 398 (2004) 133. https://doi.org/10.1016/j.physrep.2004.06.001
3. Gamow G. Quantettheorie des Atomkernes. Zs. für Phys. 51 (1928) 204. https://doi.org/10.1007/BF01343196
4. Condon E. and Gurney J. G. Wave Mechanics and Radioactive Disintegration. Nature 122 (1928) 439. https://doi.org/10.1038/122439a0
5. Buck B., Merchant A. C., Perez S. M. New Look at α Decay of Heavy Nuclei. Phys. Rev. Lett. 65 (1990) 2975. https://doi.org/10.1103/PhysRevLett.65.2975
6. Sobiczewski A. Present view of stability of heavy and superheavy nuclei. Phys. Part. Nucl. 25 (1994) 295. https://doi.org/10.1070/PU1996v039n09ABEH000167
7. Olkhovsky V. S., Petrillo V., Jakiel J., Kantor W. Particle tunneling and scattering in a three-dimensional potential with a barrier. Central Europ. J. Phys. 6 (2008) 122. https://doi.org/10.2478/s11534-008-0071-8
8. Bonetti R., Broggini C., Campajola L. et al. First Measurement of the 3He(3He, 2p)4He Cross Section down to the Lower Edge of the Solar Gamow Peak. Phys. Rev. Lett. 82 (1999) 5205. https://doi.org/10.1103/PhysRevLett.82.5205
9. Spitaleri C., Aliotto M., Lattuada M. et al. "Trojan Horse" method applied to 2H(6Li, α)4He at astrophysical energies. Phys. Rev. C 63 (2001) 055801. https://doi.org/10.1103/PhysRevC.63.055801
10. Junghans A. R., Mohrmann E. C., Snoyer K. A. et al. 7Be(p, γ)8B Astrophysical S Factor from Precision Cross Section Measurements. Phys. Rev. Lett. 88 (2002) 041101. https://doi.org/10.1103/PhysRevLett.88.041101
11. Imbriani G., Constantini H., Formicola A. et al. Eur. Phys. J. A 25 (2005) 455. https://doi.org/10.1140/epja/i2005-10138-7
12. Lemut A., Bemmerer D., Bonetti R. et al. First measurement of the 14N(p, γ)15O cross section down to 70 keV. Phys. Lett. B 634 (2006) 483. https://doi.org/10.1016/j.physletb.2006.02.021
13. Winslow G. H. Alpha-Decay Theory and a Surface Well Potential. Phys. Rev. 6 (1954) 1032. https://doi.org/10.1103/PhysRev.96.1032
14. Preston M. A. Physics of the Nucleus (Addison-Wesley Publish. Company, 1962).
15. Кадменский С. Г., Фурман В. И. Альфа-распад и родственные ядерные реакции (Москва: Энергоатомиздат, 1985).
16. Давидовский В. В., Зайченко А. К., Ольховский В. С. Новые возможности одночастичной модели альфа распада. Зб. наук. праць Ін-ту ядерних досл. 6 (2005) 28. https://jnpae.kinr.kyiv.ua/06.1/Articles_PDF/jnpae-2005-06-1-028.pdf