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PARTICLE TUNNELING AND SCATTERING IN A THREE-DIMENSIONAL POTENTIAL
WITH A HARD CORE AND AN EXTERNAL POTENTIAL BARRIER

V. S. Olkhovsky, M. V. Romaniuk

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

The non-relativistic particle tunneling and scattering through a spherical three-dimensional potential barrier (either
rectangular, or Coulomb repulsion), containing a spherical potential rectangular well with a hard core inside, had been
studied. The explicit analytical expressions for the S-matrix of elastic scattering and all probability amplitudes (external
and internal reflections, tunneling inside and tunneling outside) for zero angular momentum and for relations between
them had been firstly obtained. In conclusion, unlike to the typical simplified one-dimensional approximation, utilized
for low-energy astrophysical nuclear-fusion reactions, we underline the necessity to consider the three-dimensional
picture which brings to the multiple internal reflections from internal barrier wall and also to the more strict penetration

factor.
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Introduction

The time-dependent aspects in the process of the
quantum tunneling of particles through 1-dimensional
(1D) barriers had been the object of several papers,
reported, for instance, in [1] and [2] (and in many
references quoted therein). The main results of [1, 2]
consist in the self-consistent definitions of tunneling
and reflection durations for 1D transitions. However,
up to now the time analysis of the three-dimensional
(3D) tunneling had not been practically presented.
Really, particle tunneling through a 3D barrier had
been studied only in a simplified stationary way in the
framework of the WKB approximation (see, for
example [3 - 6]), or using only the elementary time-
dependent description in applications for some
concrete tasks such as a-decay.

We study the non-relativistic particle tunneling and
scattering through a spherical three-dimensional
potential barrier (either rectangular, or Coulomb-
repulsion). In the central part of the system we shall
also consider a spherical potential rectangular well
with a hard core. Our approach is based on the
generalization of the paper [7] where only a rectangular
well and a rectangular barrier had been considered
without a hard core, without a Coulomb repulsion
barrier and also out of the framework of the WKB.

Our consideration will be limited here by the
stationary wave functions and zero orbital quantum
number (/ = 0). We will describe the impact of the
particles, also following [7], as a sequence of two
successive processes: in the first stage an ingoing
wave packet tunnels through the barrier inside the
well, producing a reflected wave in the external
region; in the second phase, an outgoing wave from
the well (which has been appeared after passing of
the ingoing tunneling wave packet) tunnels through
the barrier and produces, finally, an outgoing mode
in the external region and a reflected wave in the
internal region. Then, we describe the sub-barrier
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low-energy scattering as a whole for the considered
potential picture, with obtaining the S-matrix and the
relation between the S-matrix and all the probability
amplitudes. Concluding, we indicate to the
importance of taking into account the multiple
internal reflections from the internal barrier wall and
also the strict quantum-mechanical penetration
factor in the scattering and nuclear-fusion S-matrix,
unlike to the typical 1D approximation utilized in
low-energy  sub-barrier  astrophysical nuclear
collisions (see, for instance, [8 - 12]).

Impact from outside

The schemes of the impact from outside for the
case of the rectangular and Coulomb-repulsion
barriers are shown in Fig. 1. Following [7] for the
case of a rectangular well (but now with a hard core)
and a rectangular barrier, we shall refer to the
various region in this way. Region I with > R,
represents the external region of null potential;
region Il delimited by R, and R; is the barrier region;
region III with Ry < r < R; is the well; region IV
with » < Ry 1s the infinite hard core with null wave
function. In the case of the Coulomb barrier the
vertical line » = R, separates the external above-
barrier region I (where the particle kinetic energy £
is larger than the height of the Coulomb-repulsion
barrier) and the internal under-barrier region II
(where E is less than the height of the Coulomb-
repulsion barrier); the vertical line » = R, separates
the well III and the maximal height of the Coulomb-
repulsion barrier.

The radial stationary wave function for the
potential schemes in Fig. 1, a and b, which satisfies
the radial Schroedinger equation, will be

(ex) _ ,=ikip (ex) ,ikip =pr—

= L p=r—-R, R,<r<w

(ex) _ v w

- =a,e” + Ple R <r<R,

(ex) _  gin —ikyp

i =Are™ Ry<r<R, (1)
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(for the scheme 1, a) and v z,z,€°

r

R1 <r<o (3)
(ng =[G, (k,,n, 1) —iF; (ky,;7,7)]+
z,e andz,e are the particle charges. The Coulomb

functions Gy(k,, 7, ¥) and Fy(ky, 77, ) have the
asymptotic

+A;X[G0(k1,77,r)+iE)(k1,77,I”)], Rl SV<OO,

@' is formally the same as @, R <r<R,,
G,(k,,n,r)—=z—>cos(k, r —nIn2k;r+o),
O\ =A™, p=r-R,, R,<r<R (2)
) Fy(k,n,r)——=—sin(kyr —nIn2k r+o), (4)

(for the schemel, b), respectively. Here k; and
E = K*k*/2m are the wave number and the kinetic 2 z.8%m
energy, y = 2m(Vy - E)"?h, kh = [2m(Vo+ Nn=—5— is the Sommerfeld parameter, o=
+ E)]"?/h . For the Coulomb- repulsion barrier Wk

| =arg T(1+i7).
' v ‘
v
— [Gylk,m.r) =18, (k.7,r)]
yal Al! =il
m n I re — AS(G, (k,7.r) +iFy (k,7.7)]
J - -— "
.] - ((A_.(,-t..‘_.ﬂ‘_.().?.a {; o r |
t |
| —
: —>
U Ru Rl. RZ r
: >
Ry ;R.-' R: r
Vg
I",a
a b

Fig. 1. Schematic description of the impact of the ingoing wave with the rectangular (a)
or Coulomb-repulsion barrier from outside (b).

In addition, we have that 4", o, By and 4,"” analytical expression can be found by imposing the
are, respectively, the external reflection amplitude continuity condition for both the stationary wave
factor, the evanescent and anti-evanescent wave functions and their first derivatives at the points » =
amplitude factors during the first tunneling and the =R, and r = R, finding for the external reflection
internal transmission amplitude factor. Their coefficient the expression:

[exp(-2ik, (R, ~ R))exp(22(R, ~ Rz + ik )z k) ~ (2 k)i +ik,)
—[exp(2 ¥ (R, = R)I(x —ik ) x —ik,) + (x +ik))(x +ik,)

AZX = H (5)

(¥ +ik,)
(Z_ikl)

which, in the limit y(R, —R,) tending to infinity, becomes —exp(—2ik,(R, —R,)) . The internal

transmission (tunneling) amplitude A4 is equal to

A = 4iZk1 GXp((—)( + ikz )(Rl — Ro) + ()( B ikl )(Rz — Ro ))

- . . . . ’ (6)
! —[exp(2y (R, = Ry —ik))(x —iky) + (x +ik))(x +ik,)
which, in the same limit as before, tends to 0.
As in [7], one obtains
2 ke
A +k—\A;" =1 (7)

1
being the consequence of the conservation law for the probability fluxes.
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For the case (2) the external reflection amplitude A4, is equal to

ex __

_ [Go(k’n:Rl ) B lﬁz)(k: 779R1 )]lkz + [G(; (k,?],Rl ) B iE)'(kan:Rl )]k1

R

®)

[GO (ka 77? Rl) + ZFZ) (ka 77? Rl )]lkz + [G(; (ka 77: Rl ) + ZE)'(k? 77: Rl )]kl

the internal transmission (tunneling) amplitude A4 is equal to

in

2ik, exp(ik,(R, — R,))

"G, (K, R) + iF (k. Rk, +[Gy (k. R) +iFy (k. ROV,

and also equation (7) is valid if the known relation |

F,G;—G,F, =1 for the wronskian is taken into
account. Here G, and F| are the derivatives of G,
and F, with respect to k| R,, respectively.

For very small k; when &k, — 0 (more precisely,
when 27 >> k,R,)

1
2 1
G, — Z(k'i)z I, [2(27rklR1 )Zjexp(my),
7
1
with I, (2(27[!{1R1 )2j -1,

1
1

G, > 2 (2—77j2 K, (2 (27kR,)? j exp(7n),
z

1 1
with K, (2(271]{1R1 )2) - ln(l ly(27k,R))? ] ,

1 1
Fy > (kR )2 I, (2(27[1’(1R1 )2jexp(—7m) ,

1 1
with 7 (2(27rk1R1 )zj S (27kR )2,

1 1
Fy = (27kR)2 I, (2 (27kR,)? j exp(-77),

y = 1.781... being the Euler constant, and if
Qe n/k,R)[Iny 27k, R, )"*]<<1, the trans-
mission (penetration) probability from outside
through the coulomb barrier into the internal

. 12
rectangular potential well ‘A’T” becomes

2 k1

T
— exp(—27n).
R p(=27n)

2

in
|4

(10)

So, in distinction from 1D WKB approximation
which is typical for low-energy analysis, in the 3D
case one has even for very small k; to take into
account not only the exponential factor exp(-277),
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)

. 7k
but also the pre-exponential factor ——-.
271
For the rectangular barrier (see Fig. 1, a) the
phase times of the tunnelling through the barrier
inwards from outside and of the external reflection

ph(in) ph(ex)

form the barrier outside, 7, and 7, ", can be

defined as the evident generalization of the one-
dimensional (1D) definitions:

i _ p Ol(arg A (E)e )

! OE
R 1 1 hik
+—2 —>Z(R2—R1) (——i——)/}( 5 vL2 — 1,2 (11)
12 vV, m
and

Tph(ex) — h a(arg(AI(:X) (E)eiikle )) +
N OF

2

& 2
V4

141

(12)

Z(Ry—Ry)

So we can see from expressions (8) and (9), for
analogy with the similar one-dimensional quantities,
the manifestation of the Hartmann effect (i.e. the
absence of the dependence of the phase and mean
tunneling time on the barrier width R,- R, for
sufficiently large R,-R;, or more precisely
Z(Rz _Rl) >>1).

Emission from (out of) the barrier

The schemes of the emission from the barrier for
the case of the rectangular and Coulomb- repulsion
barriers are shown in Fig. 2.

The radial stationary wave functions for the
schemes in Fig. 2 will be

in __ _ikyp in _—ik,p

gy =€ +Aie™, Ry <r<R,

in _ P P

) =a,e P+ Be”, R <r<R,, (13)
in __ gex ikp

) = A e, R, <r<mw
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and O\ = A7[G, (k,n,7) +iF,(k,n,7)], p=7r—R,,
in ik in _—ik
q)(111)=62p+ARe ¥,  R,<r<R, R <r<w (14)
1
(ex) (in)
@) is formally the same as @, (R, <r<R,), respectively.
A I/ A
I/'
oI 1§ s L
X e A=
Vj ekffl € A’R? _,,A:[G“(k'vir)_‘_lpomﬂjr)]
—
:(T.e—.‘k;p a:e'Zﬂ+ﬁ:eIp > . ‘I?erk:ﬂ E
“R
g I
\
‘ -
. 0 Ry R, R2 -
0
Ry R; R; r
Vo
Vo
: b

Fig. 2. Schematic description of the emission of the internal outgoing wave through the rectangular (a)
and Coulomb-repulsion barrier (b).

Imposing the continuity conditions for the stationary wave functions and their derivatives at the point » =
R, and r = Ry, we find the analytical expressions for the amplitudes 4, , «,, 3, and 4;". In particular, the

internal reflection amplitude A4j is equal to

[exp(2ik, (R, — R))exp(2 ¥ (R, — R)](y —ik) )y +ik,)—(x +ik))( ¥ —ik,) .

A7 = ; ; ; ; (15)
—[exp(2x (R, = ROy —iky )y —iky) + (x + ik )(x + iky)
The external transmission (tunneling) amplitude A4;" is equal to
A = 4i7(k2 exp((;( + ikz )(Rl — Ro )) + (;t’ - ik1 )(Rz — Ro )) (16)
! —[exp(2 (R, = R))(x —ik))(x —ik,) + (x +ik) ) x +ik,)
For the case (2) the internal reflection amplitude 4, is equal to
Ain — eZikz(R] -Ry) [GO (k] ’779 R] ) + ZE) (k] ’775 Rl )]lkz - [GO (kl ’77, R] ) + IE) (kl s 77’ R] )]kl (17)
R [ ’
[Go (ki 1, Ry) +iFy (K, 17, ROk, +[Gy (ki 1, Ry )+ iF; (K17, Rk,
and
ex __ 2lkZ exp(ikZ (Rl — RO )) (1 8)
[Go (ky,m, R,) + iF (ky 17, Ry Niky +[Gy (ki1 Ry) +iE, (K1, Ry) Tk
And also as in [7], one obtains | made for very small k; when &y — 0 after (9) till
(10), we obtain
2k 2
|y + a4 ] =1 (19) . .
k, A > 7 exp(—27n). (20)

271
as a consequence of the conservation law for the

probability fluxes. So also for (20), in distinction from 1D WKB
Repeating for (18) the same reasoning, as we approximation which is typical for low-energy
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analysis, in the 3D case one has to take into account
for very small k; not only the exponential factor
exp(-2zn), but also the pre-exponential factor

T
k2 Rl .

For the rectangular barrier (see Fig. 2, a) the
phase times of the internal reflection from the
inward barrier wall inside the well and of the
tunneling through the barrier outwards from the

internal barrier wall, z;"™ and 7"’

, can be also

defined by the evident generalization of the general
1D definition from [1, 2]:

LPhm) _ 8(arg(Ag”)(E)e_ik2Rl ) _
R

So, we see from (21) - (22) again the manifestation
of the Hartman effect with the absence of the
dependence on R; - R;.

Scattering matrix

Now we shall connect two mechanisms of
scattering described above in one single scattering
event, introducing (as in [7]) the S-matrix of
scattering and considering the multiple reflections
inside the potential well. For this purpose we
describe the radial stationary wave function for
potential schemes in Fig. 3 as:

y,=e"" -8"  p=r-R,, R <r<w,

E v,=ae” +fe”, R <r<R,,
Vi = A(e_ikizp - eikizp) > R, <r<Rg,
_R 2 1)
v,  ARR) v, =0, r<R,, (23)
and where § = Se*™® and
LPe _ g O(arg(4;™ (E)e ™)) ¥, =[G, (k,,n,r)—iF,(k;,n,r)]—
T
OE )
_S[Go(kl,7],I’)+1E)(k1,77,l")], rZRza
(ex)
—ﬁ:hwz Y, is the same as ¥, for R <r<R,,
Vv, OE
W, =A™ -, R, <r<R,
in 1 1
=" )W(V—I‘FE)/Z- (22) ¥, =0, r<R, (24)
| respectively.
A V A
V
1 / I el o e ) _
G e o (k,7,0) —iFy k.7, £)1- SIGy (k.. 0) +iFy (k.7, 0)]
V;
A(e'-'"‘:.f‘ _ e**‘:.ﬂ’) ae 2+ ekt o~ P _ gee‘«':p E
E |
|
- »>
. 0 Ru RI R 2 r
¢ Ra R[ R_‘ r
¥,
Vo
a b

Fig. 3. Schematic stationary description of the scattering as a whole for the rectangular (a)
and Coulomb-repulsion barrier (b).

Imposing the continuity conditions for the
stationary wave functions and their derivatives at the
point »=R, and r=R;, we find the analytical
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expressions for the S-matrix, the amplitude A and

the amplitudes o and B. In particular, for the case

(23) the analytical expressions for S and A are:
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S=

e (R R”)(;(Hk Vik, — y)+ (y + ik, )ez’kz(R‘ R”))

(x — ik, )ik, — )+ (ik, +;()e2”‘ 2Ry R‘)))Jre_z"(R2 R')(;(Jrlk Vik, + y)+(—y + ik, )ez’kz(R RO))

*21/(1(132 Ry) —ZZ(Rz Rl)(lk }()(}(-i—lk )+( }(+lk )e2lkz(R1 Rn))

(}( ik, )ik, — y)+ (ik, + y)e*™ ®Ro)y 4 g2 (RR

4ik1;(exp{(;(+ik2 )(Rl _Ro) _(;t/ +ik1)(R2 _Ro)}

2iky (R, —RO)) >

)(Z+lk1)(lk2 +x)+(—x +ik,)e

B (ikl - Z)(ikz - Z) + (ikz + Z)eZikZ(RliRO) ) + eizl(RrRl)(Z + ik1 )(_ikz - Z) + (Z - ikz )eZikZ(RFRO)) ’

(25)

And for the case (24) the analytical expressions for S and A are:

S =

[Go(kleﬂaRJ_iE)(knn’Rl)]kz COSkz(Rl _RO)_[GO (kl,U,Rl)—iE) (kl,ﬂ,Rl)]kl Sinkz(R1 _Rg)

(G, (k,,n,R))+iF,(k,,n,R)]k, cosk,(R, —R,)) -G, (k,,n,R)+iF, (k;,n,R)]k sink,(R, —R,)

A=

[Zieikz(Rz—Ro)kl ]

[G, (17, R+ iF, (k1. R) T, (1= €2 4 [G, (k. Ry ) +iF, (k7. R, ik, (14+ 2Ry

As in [7], we can see that |S| = ‘S“ =1; and can be

convinced by the direct comparison of 4 and S with

A, A4, Ay and A with the proper calculations
(derivations) that
Ain
=— (27)
1+ 4,
and
Aet Ain
S = AT+ AAT = AT + ﬁ (28)

(formulas (27) and (28) are valid for the rectangular
and Coulomb-repulsion barrier, respectively).
Considering the expressions (10) and (20) repea-

ting for 4; and A, the same reasoning’s, as we
made after (9) till (10) in the case k; — 0, we obtain

A4S k ]_:0_1 , (29)
A k ]_:0 gl (Ri=Ro) (30)
Sk:>>01 , (31)
T = 1—Sk1:>00,

up to the terms of order exp(—277).

It is interesting that for a rectangular barrier all
the amplitudes 45, 47", Ay and A, depend on the
hard-core radius R, through the factors R, — R, and
R, —R,. For a Coulomb-repulsion barrier only A,

Ay and A depend on R, through the factor

278

(26)

el which is important inside a Coulomb-

repulsion barrier. This dependence is a consequence
of the null values of radial wave functions inside a
hard core.

In [7] the multiple internal reflections in (27) an
(28) are present even without the internal hard core
as a consequence of the infinite radial internal
reflections between the diameter-opposite points of
the internal spherical 3D barrier wall, similar to the
internal multiple reflections between two 1D

barriers. The physical meaning of the term — is
1+ 4,
directly connected to the presence of a infinite
sequence of coherent multiple internal reflections
that can be described by the stationary wave
functions:

) ) . . ) A .
A;M)(I—Agw +(A;;n))2 _(AI(;"))3 +.n)eflkr — T : ﬂkr’
1+ 4"
(32)
(in) (in) (in) \2 (in) 3 ikr ;in) ikr
A= A+ (A7) = (A) 5.0 = e
R

(33)

for the ingoing and the outgoing waves respectively.

Now, with the presence of the hard core in the
interval (0, Rg), we have an infinite series of
coherent radial internal reflections between the hard
core and the diameter-opposite points of the internal
spherical 3D barrier wall (see Fig. 3).

Such coherent multiple internal reflections do
usually take place when the bombarding charged
particles are elementary (protons, positrons,
7 -mesons etc). And they do also take place for non-
resonance and resonance scattering.
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But if a bombarding charged particle is a cluster,
like, for instance, the alpha-particle, and we have a
resonance scattering with the formation of the alpha-
radioactive compound nucleus, then we have a more
complicated non-coherent process: the alpha-particle
is vanishing inside the compound (parent) nucleus
almost at the nuclear surface and then, after a certain
virtual and real sojourn time z,,; (including the
motion under the surface before the vanishing and
after the new formation), the alpha-particle appears
again near the nuclear surface and penetrates
through the coulomb barrier outwards (see, for
instance, papers [14, 15]).

Assuming that, after every exit “portion” of the
o-particle probabilistic wave packet in the infinite
series of multiple coherent internal reflections with
the successive its impacts and tunneling exits
outwards, the probability of every successive impact
onto the internal wall of the Coulomb-repulsion

barrier is decreasing by the factor |AZ7 |2

incomparison with the preceding impact, we can
represent the total probability of the o-decay
(evidently equal to 1, if we recall in advance (19)) as
an infinite sum of the decreasing geometrical
progression:

PO AR P ] A LA P =

(ki/ko)| | A7

2 R
= (ky/ky) /T1-] 47 F1=1.

ex
AT

(34

Of course, we suppose here (in the total
accordance with the above-mentioned indication on
the a-particle vanishing and formation inside parent
nucleus near the barrier) that various steps of
multiple internal reflections, after the o-particle
formation near the parent-nucleus surface till its
successive vanishing (dissolving) inside the parent
nucleus, are incoherent relative each other because
of the independence of the successive vanishing
processes and hence not the probability amplitudes
but the probabilities have be summed over the
succession of multiple internal reflections.

Further, we do naturally presume in [16] that
during every step of the o-particle incoherent
multiple internal reflections the general mean
duration 7, of the a-particle virtual and real
existence inside the parent nucleus, after its previous
internal reflection till its successive internal
reflection, is equal to the sum of the mean time of
the o-particle vanishing and successive formation
processes, the mean time of its reflection time inside
the nucleus and the mean time of its kinematical
motion after reflection inside and towards the
surface after formation. And the quantity z; is the
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same for any pair of successive a-particle impacts.

The effective, or mean, value of the alpha-
particle virtual and real sojourn time inside the
parent alpha-radioactive nucleus between the
successive incoherent multiple internal reflections
during the long alpha-decay had been evaluated in a
phenomenological way, basing on the simple base of
the experimental exponential law of the o-decay
with the mean time 7 [16]:

L(t) = exp (-t/7). (35)

If 7,,; << 7, then during 7, the decay probability
decreases by the quantity

AL=1-]4" = /T (36)

So, taking into account (34), we obtain:

Tl T= (ki/k2) | A7 | and 7y, = (ki/k>) | A |2r = Pr,
(37)
where P = (ki/ky)|A7|’.
Formula (37), rewritten, with v=1/7, andz= 1/4,
in the form of the known formula (see, for instance,

(3, 4D

A=vP (38)

represents a new phenomenological approach to the
meaning of the pre-exponential factor.

Let us calculate 7, for instance, for 210p,, (for
values E, = 5.407 MeV, V, = 167 MeV, R, =
=8.76 fm and R, = 8.975 fm), taking into account
that 7 = 138.376 days = 11955686.4 s. Then we
obtain z,,;,=2.434 - 10" s and 7, = 5.740 - 10" s,
and consequently now v = 1/z,; = 4.108 - 10" s’
and 1.742 - 10" s™', respectively.

Obtained here quantity v = 1/7, is different from
the Gamow pre-exponential factor vy2R, = [2(E +
+ Vo)/m]"*2R,, evaluated as a simple classical
number of purely kinetic impacts on the nuclear
surface per time unit, and also from the Landau

evaluation of the pre-exponential factor as D/2zh (D

is the mean level distance for the parent nucleus in
the considered energy interval).

Numerically our value is strongly different from
the Gamow value: for chosen in [16] E =
=5.407 MeV, V, = 16.7 MeV, R, = 8.76 fm and
R =8975fm,  w/2R =1881-10""s"'  and
1.836-10%'s™', respectively. Such difference can be
explained physically by the very small moving time
inside the potential well in comparison with the
duration of the vanishing and formation processes.
Also it is easy to see that the value of Ry, does not
essentially influence on the values of 4z, A7 and 7.
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For D = 100 keV, the value D277 =2.418-10"s™".

So, our results are not very distant from the Landau
value (may be, because both quantities are connected
with the fundamental intrinsic properties of the internal
motions inside the parent nucleus).

By the way, for the rectangular barrier (see
Fig. 3, a) the scattering phase time is

R darg Se™ ™ N R,

39
oF vl (39)

and the limit ¥(R, - R;) approaching infinity it goes
to 2/(vy).

So in this limit, the scattering phase time
coincides with 7" (see, for instance, [1, 2]).

Conclusions

The obtained here results (together with the
previous results from [7]) can be used as an initial

phase for the time-dependent study of nuclear
reactions (beginning from the one-channel elastic
scattering) and decays for any value of / and also for
non-spherical cases. Also they can be used as an
initial phase for analysis of the sub-barrier low-
energy astrophysical nuclear-fusion reactions. In the
last case it is important to take into account not only

in

R
which appear in the consequence of the multiple
internal reflections between the hard core and the
diameter-opposite points of the internal spherical 3D
barrier wall. These both factors are absent in 1D
approximation, although in many papers (see, for
instance, [8 - 12] and appropriate references therein)
this 1D approximation is typical.

the penetration factor (10) but also the factor n !
+

We are thankful to professors E. Recami and
R. Bonetti for useful discussions.
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TYHEJIOBAHHSA TA PO3CIAHHS YACTHUHOK Y TPUBHUMIPHOMY ITOTEHHIAJII
3 ’ZKOPCTKOIO CEPHEBHUHOIO TA 30BHIIIHIM INOTEHUHIAJIBHUM BAP’€POM

B. C. OabxoBcbkuii, M. B. Pomaniok

BuBYeHO TyHEIIOBaHHS Ta PO3CISTHHS HEPENSTUBICTCHKOT YACTHHKHU KPi3h CEPUYHUN TPUBUMIPHHUN NOTEHIIabHUIT

Oap’ep (MPSIMOKYTHUIN 4YM KYJIOHIBCHKHI), IO MICTHTh HOTCHIATbHY

HOPSIMOKYTHY SIMy M 2KOPCTKY CEpLEBHHY

BcepeauHi. Ymepuie Oylo OTPUMAaHO SIBHI aHANITHYHI BUPA3d Ul S-MaTpHLli NPYXKHOTO PO3CISHHS Ta aMIUITY.
IMOBIpHOCTI (30BHILIHBOIO Ta BHYTPIIIHBOTO BIiIOWTTS, TYHEIIOBaHHS 330BHI Ta TYHENIOBAHHS 13 CepeiuHM) 1
CHIBBIIHOIIECHHS MiX HAMH. Y poOOTi, Ha BIAMiHY BiJ THIIOBOTO CHPOIIECHOTO OJHOBHUMIPHOTO HAONIKEHHS, SKUM
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PARTICLE TUNNELING AND SCATTERING

KOPHUCTYIOTHCSI B HU3bKOSHEPTeTUYHUX acTPO(I3UYHUX PEAKI[IsIX CHHTE3y, MU MIIKPECIIOEMO HEOOXITHICTh PO3IIISAY
TPUBHMIPHOI KapTHHH, KA fae Oararopa3oBi BHYTPIlIHI BiZOWBaHHS BiJl BHYTPIIIHBOI CTIHKH Oap’epa, a TaK0oxX OiIbII
TOYHUH KOEPILiEHT MPOHUKHEHHSI.

Kniouosi crosa: TpuBUMipHE TYHEIIOBaHHS, PO3CIsIHHS, Oap’€ep, MOTEHIiaIbHA sSMa, )KOPCTKA CepLIEBHHA.

TYHHEJIMPOBAHUE U PACCESHHUE YACTHUI] B TPEXMEPHOM IIOTEHIHAJIE
C KECTKOU CEPAINEBUMHOM M BHEIIHMM INOTEHIMWAJIBHBIM BAPBEPOM

B. C. OabxoBcbkuii, M. B. PomaHiok

U3yueHO TYHHEIUPOBAHHE U paCCESHUE HEPESITUBHCTCKON YACTUIIBI CKBO3b C(EpPUYECKUil TpeXMepHBIN
MOTEHIHANIBHBIN Oapbep (MPSIMOYTOJIBHBIA UM KYJTOHOBCKHIA), COAEPKANINN MOTEHIUAIBHYIO PSIMOYTOJIBHYIO SIMY U
KECTKYIO CEpIIIeBHHY BHYTpPH. BriepBble OBUIM TOJMyYEHBI SIBHBIC AHATMTHYECKHE BBIPAKECHHS IS S-MaTpHIIGI
YIPYTOTO PACCESIHUS M aMIUTHTYI BEPOSTHOCTH (BHEIIHETO W BHYTPEHHETO OTPaKCHUs, TYHHEINPOBAHUS BHYTPH H
TYHHEJIMPOBAHUS W3 CEPEIMHBI) M COOTHOIICHHS MEKIy HUMH. B paGoTe, B OTIMYHE OT THIHYHOTO YIPOIIECHHOTO
OJIHOMEPHOTO MPUOIMKEHHUS, KAKUM TMOJB3YIOTCS B HU3KOIHEPTeTHYECKHX ACTPO(PUIMUECKUX PEAKIMAX CHHTE3a, MBI
MOAYEePKUBAEM HEOOXOMUMOCTD PACCMOTPEHHS TPEXMEPHOM KapTHHBI, KOTOPAS OTMCHIBACT MHOTOKPATHBIE BHYTPEHHHE
OTpa)kKeHHsI OT BHYTPEHHEH CTEHKH 0apbepa, a Takke 0osiee TOYHbIH KOI(PHUIUSHT MPOHUKHOBEHHSL.

Knrouesvie crosa: TpexMepHOe TYHHEIIUPOBAHUE, paccesHue, Oapbep, MOTCHINATbHAS IMa, )KECTKas CepIIIeBHUHA.
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