![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Peculiarities of the decay of rotational bands in superdeformed nuclei
A. Ya. Dzyublik, V. V. Utyuzh
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: The equation for the nuclear deformational motion in asymmetric potential with two minima is quasi-classically solved. Taking into account the tunneling, we obtained formulas for the energies and wave functions similar to those which were previously derived for the two-band mixing. We have created a theory for the decay out of superdeformed rotational levels based on the exact equations for Green's functions, where both the residual and electromagnetic interactions are treated on equal footing.
References:1. Strutinsky V. M. Nucl. Phys. A 95 (1967) 420. https://doi.org/10.1016/0375-9474(67)90510-6
2. Бор А., Моттельсон Б. Теория ядра. Т. 2 (Москва: Мир, 1975).
3. Давыдов А. С. Возбужденные состояния атомных ядер (Москва: Атомиздат, 1967).
4. Khoo T. L., Lauritsen T., Ahmad I. et al. Nucl. Phys. A 557 (1993) 83. https://doi.org/10.1016/0375-9474(93)90533-4
5. Schiffer K., Herskind B. J., Gascon J. Z. Phys. A 332 (1989) 17. https://doi.org/10.1007/BF01292576
6. Vigezzi E., Broglia R. A., Døssing T. Phys. Lett. B 249 (1990) 163. https://doi.org/10.1016/0370-2693(90)91236-5
7. Vigezzi E., Broglia R. A., Døssing T. Nucl. Phys. A 520 (1990) c179. https://doi.org/10.1016/0375-9474(90)91145-H
8. Bjørnholm S., Lynn J. E. Rev. Mod. Phys. 52 (1980) 725. https://doi.org/10.1103/RevModPhys.52.725
9. Shimizu Y. R., Vigezzi E., Dossing T., Broglia R. A. Nucl. Phys. A 557 (1993) 99. https://doi.org/10.1016/0375-9474(93)90534-5
10. Bazzacco D. Nucl. Phys. A 583 (1995) 191. https://doi.org/10.1016/0375-9474(94)00658-A
11. Weidenmüller H. A., Brentano P., Barrett B. R. Phys. Rev. Let. 81 (1998) 3603. https://doi.org/10.1103/PhysRevLett.81.3603
12. Äberg S. Phys. Rev. Lett. 82 (1999) 299. https://doi.org/10.1103/PhysRevLett.82.299
13. Stafford C. A., Barrett B. R. Phys. Rev. C 60 (1999) 051305(R). https://doi.org/10.1103/PhysRevC.60.051305
14. Shimizu Y. R., Matsuo M., Yoshida K. Nucl. Phys. A 682 (2001) 464. https://doi.org/10.1016/S0375-9474(00)00674-6
15. Ландау Л. Д., Лифшиц Е. М. Квантовая механика (Москва: Наука, 1974).
16. Heading J. An Introduction to Phase-Integral Methods (New York: J. Wiley, 1962).
17. Feynman R. P., Leighton R. B., Sands M. The Feynman Lectures in Physics. Vol. 3 (Massachusetts-Palo Alto-London: Addison-Wesley publishing company, inc., reading, 1965).
18. Denisov V. Yu., Dzyublik A. Ya. Nucl. Phys. A 589 (1995) 17. https://doi.org/10.1016/0375-9474(95)00075-C
19. Lynn J. E. Harwell Report AERE-R (1968) p. 5891.
20. Gai E. V., Ignatyuk A. V., Rabotnov N. S., Smirenkin G. N. Physics and Chemistry of Fission (IAEA, Vienna, 1967) p. 337.
21. Бом Д. Квантовая теория (Москва: Наука, 1965).
22. Дзюблик А. Я. Ядерная физика 66 (2003) 1.
23. Кобзарев И. Ю., Николаев Н. Н., Окунь Л. Б. Ядерная физика 10 (1969) 864.
24. Dzyublik A. Ya. phys. stat. sol. (b) 104 (1981) 81. https://doi.org/10.1002/pssb.2221040108
25. Дзюблик А. Я. Теор. мат. физ. 87 (1991) 86.
26. Goldberger M. L., Watson K. M. Collision Theory (New York: J. Wiley, 1964).
27. Бор А., Моттельсон Б. Теория ядра. Т. 1 (Москва: Мир, 1975).
28. Dzyublik A. Ya., Utyuzh V. V. Phys. Rev. C 68 (2003) 024311. https://doi.org/10.1103/PhysRevC.68.024311
29. Krücken, Dewald A., Brentano P., Weidenmüller H. A. Phys. Rev. C 64 (2001) 064316. https://doi.org/10.1103/PhysRevC.64.064316
30. Lauritsen T. et al. Phys. Rev. Lett. 88 (2002) 042501. https://doi.org/10.1103/PhysRevLett.88.042501