![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Unified semiclassical approach to isoscalar collective excitations in nuclei
V. I. Abrosimov1
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: A semiclassical model based on the solution of the Vlasov kinetic equation for finite systems with a moving surface has been used to study the isoscalar collective modes in heavy spherical nuclei. Within this model, a unified description of both low-energy surface modes and higher-energy giant resonances has been achieved by introducing a coupling between surface vibrations and the motion of single nucleons. An analytical expression for the isoscalar multipole response function can be derived by using a separable approximation for the residual interaction between nucleons. The response function obtained in this way gives a good qualitative description of the isoscalar (monopole, quadrupole and octupole) response in heavy nuclei. Although shell effects are not explicitly included in the theory, our semiclassical response functions are very similar to the quantum ones. This happens because of the well known close relation between classical trajectories and shell structure.
References:1. Van der Woude A. The Electric Giant Resonances. Electric and Magnetic Giant Resonances in Nuclei. Ed. by J. Speth (Singapure: World Scientific P. C., 1991) p. 99. https://doi.org/10.1142/9789814503495_0002
2. Holzwarth G., Eckart G. Fluid-dynamical approximation for finite Fermi systems. Nucl. Phys. A 325 (1979) 1. https://doi.org/10.1016/0375-9474(79)90148-9
3. Bertsch G. F., Broglia R. A. Oscillations in Finite Quantum Systems. Ch. 6 (Cambridge: Cambridge University, 1994).
4. Lacroix D., Ayik S., Chomaz P. Collective response of nuclei: Comparison between experiments and extended mean-field calculations. Phys. Rev. C 63 (2001) 064305. https://doi.org/10.1103/PhysRevC.63.064305
5. Brink D. M., Dellafiore A., Di Toro M. Solution of the Vlasov equation for collective modes in nuclei. Nucl. Phys. A 456 (1986) 205. https://doi.org/10.1016/0375-9474(86)90390-8
6. Abrosimov V. I., Di Toro M., Strutinsky V. M. Kinetic equation for collective modes of a Fermi system with free surface. Nucl. Phys. A 562 (1993) 41. https://doi.org/10.1016/0375-9474(93)90031-R
7. Abrosimov V. I., Dellafiore A., Matera F. Kinetic-theory description of isoscalar dipole modes. Nucl. Phys. A 697 (2002) 748. https://doi.org/10.1016/S0375-9474(01)01273-8
8. Abrosimov V. I., Dellafiore A., Matera F. Effects of surface vibrations on quadrupole response of nuclei. Nucl. Phys. A 717 (2003) 44. https://doi.org/10.1016/S0375-9474(03)00611-0
9. Abrosimov V. I. Monopole vibrations in asymmetric nuclei: A Fermi liquid approach. Nucl. Phys. A 662 (2000) 93. https://doi.org/10.1016/S0375-9474(99)00401-7
10. Youngblood D. H., Clark H. L., Lui Y. -W. Incompressibility of Nuclear Matter from the Giant Monopole Resonance. Phys. Rev. Lett. 82 (1999) 691. https://doi.org/10.1103/PhysRevLett.82.691
11. Dumitrescu T. S., Dasso C. H., Serr F. E., Suzuki T. Collective excitations in spherical nuclei: response functions, transition densities and velocity fields. J. Phys. G 12 (1986) 349. https://doi.org/10.1088/0305-4616/12/4/007
12. Bertsch G. F., Tsai S. F. A study of nuclear response function. Phys. Rep. 18 (1975) 125. https://doi.org/10.1016/0370-1573(75)90003-4
13. Abrosimov V. I., Di Toro M., Smerzi A. Damping of giant monopole resonances within a linearized Landau-Vlasov dynamics. Z. Phys. A 347 (1994) 161. https://doi.org/10.1007/BF01292372
14. Yildirim S., Gokalp A., Yilmaz O., Ayik S. Collisional damping of giant monopole and quadrupole resonances. Eur. Phys. J. A 10 (2001) 289. https://doi.org/10.1007/s100500170114
15. Hamamoto I., Sagawa H., Zhang X. Z. Displacement fields of excited states in stable and neuron drip-line nuclei. Nucl. Phys. A 648 (1999) 203. https://doi.org/10.1016/S0375-9474(99)00024-X
16. Abrosimov V. I., Davidovskaya O. I., Dellafiore A., Matera F. Octupole response and stability of spherical shape in heavy nuclei. Nucl. Phys. A 727 (2003) 220. https://doi.org/10.1016/j.nuclphysa.2003.08.014
17. Liu K. F., Luo H., Ma Z. et al. Skyrme-Landau parameterization of effective interactions: (II). Self-consistent description of giant multipole resonances. Nucl. Phys. A 534 (1991) 25. https://doi.org/10.1016/0375-9474(91)90556-L