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UNIFIED SEMICLASSICAL APPROACH TO ISOSCALAR
COLLECTIVE EXCITATIONS IN NUCLEI

V. I. Abrosimov
Institute for Nuclear Research, Kyiv

A semiclassical model based on the solution of the Vlasov kinetic equation for finite systems with a
moving surface has been used to study the isoscalar collective modes in heavy spherical nuclei. Within this
model, a unified description of both low-energy surface modes and higher-energy giant resonances has been
achieved by introducing a coupling between surface vibrations and the motion of single nucleons. An
analytical expression for the isoscalar multipole response function can be derived by using a separable
approximation for the residual interaction between nucleons. The response function obtained in this way
gives a good qualitative description of the isoscalar (monopole, quadrupole and octupole) response in heavy
nuclei. Although shell effects are not explicitly included in the theory, our semiclassical response functions
are very similar to the quantum ones. This happens because of the well known close relation between
classical trajectories and shell structure.

1. Introduction

It is well known that the isoscalar multipole response of nuclei displays both low- and high-
energy collective modes [1]. Also known is that semiclassical models have difficulties in describing
both these systematic features of the isoscalar response, in particular, models based on fluid
dynamics, see e.g. [2], can explain the giant resonances, but fail to describe the low-energy
collective modes. On the other hand it is known from quantum studies that the coupling between the
motion of individual nucleons and surface vibrations plays an essential role in low-energy nuclear
collective motions, see e.g. [3, 4]. Semiclassical models of the fluid-dynamical type, where the
Vlasov kinetic equation is reduced to the equations of motion for the local quantities like particle
density, current density etc., do not contain explicitly the single-particle degrees of freedom.

In the present work we study the isoscalar collective modes in nuclei by using a
semiclassical approach that includes the single-particle degrees of freedom explicitly and thus
allows for an account the coupling between individual nucleons and surface motion. Our approach
is based on the direct solution of the linearized Vlasov kinetic equation for finite systems with
moving surface [5, 6]. The coupling between the motion of individual nucleons and the surface
vibrations is obtained by treating the nuclear surface as a collective dynamical variable, like in the
liquid drop model. In regard to the conception of the free moving surface, our approach can be
called the Fermi liquid drop model of nuclear collective excitations. In Sect.2 the isoscalar
multipole response function based on the semiclassical approach of [5, 6] is discussed. Several
applications of the theory to the study of isoscalar vibrations of different multipolarity are given in
Sect. 3. We concentrate our attention on the isoscalar monopole, quadrupole and octupole collective
modes in heavy spherical nuclei.

2. Isoscalar multipole response function

We treat the nucleus like a system of interacting nucleons confined to a spherical cavity with
perfectly reflecting walls that are allowed to move. We assume that the fluctuations of the phase-
space density induced by a weak external force can be described by the linearized Vlasov equation,
which is usually a differential equation in seven variables. For spherical systems this equation can
be reduced to a system of two (coupled) differential equations in the radial coordinate alone [5].
This is achieved by means of a change of variables and a partial-wave expansion:

Sf0,p0) =Y (61 (6, A,r,0)+8 fipy (&, A, Dy (@, B,y Yin (55 (D)
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The functions & £, (¢, A, 7, ®) are partial-wave components of the (Fourier transformed in

time) density fluctuations for particles with energy &, magnitude of angular momentum A and
radial position r, the + sign distinguishes between particles having positive or negative
components of the radial momentum p,. The other terms in the expansion are Wigner matrices and

spherical harmonics.
In order to solve the one-dimensional linearized Vlasov equation for the & £, functions we

must specify the boundary conditions satisfied by these functions. Different boundary conditions
allow us to study different physical properties of the system, so the fixed-surface boundary
conditions employed in [5] were adequate to study giant resonances, but different (moving-surface)
boundary conditions [6] must be introduced in order to study also surface and compression modes.
We assume that the external force can also induce oscillations of the system the usual liquid-drop
model expression

R(3,0,1) =R+§45RLM Y (3, 90) 2)

and the boundary condition satisfied by the functions & £+ at the nuclear surface is taken as [6]

8 fia(R) =6 fiin (R) = 2F'(6)iwp, 6 Ry (@) 3)

This equation has been derived with the assumption that the equilibrium phase-space density
is a function F(¢) of the particle energy alone, F'(¢) is its derivative. The boundary condition (3)

corresponds to a mirror reflection of particles in the reference frame of the moving nuclear surface,
it provides a coupling between the motion of nucleons and the surface vibrations. A self-
consistency condition involving the nuclear surface tension is then used to determine the time (or
frequency) dependence of the additional collective variables R, (t) [6].

We are interest in the multipole response function that in the moving-surface case is defined
as, see [7],

&(w)ﬁfdrrzr"sm(nw), @

with
5T (@) = 0,0, (r,0) + 0,5(r - R)SR,, (@), )

where

2 . -
So(r,@) =35 SN 1Y & D Jde Jar—asts faie, A 0)+ 6 £ (e, Ar )]

The flucation &g, (r,w) is the time Fourier transform of the density fluctuation 00,(r,1)
induced by an external isoscalar field V, (r,r)=B5(1)r'Y,, (t). The equilibrium density 0
appearing in Eq. (5) is g, =% Dr.

Now, assuming a simplified residual interaction of separable form,

v(r,n) =Kk nn (6)

the moving-surfate isoscalar collective response function of a spherical nucleus, described as a

system of 4 interacting nucleons contained in a cavity of equilibrium radius R =1 24 fm, can be
found as [8]
Ri($) =R, (5)+5,(s). (7
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Instead of the frequency @, as independent variable we have used the more convenient
dimensionless quantity s=a/(v./R) (v, is the Fermi velocity). The response function R;(s),

given by
R;(s)

R()=12 x,RO(s)’ (=2

describes the collective response in the fixed-surface limit. The response function R)(s) is
analogous to the quantum single-particle response function and it is given explicitly by [7]

94 1 & 4= (O (1))’
Ri(5) =5~ anoNzL(CLN) [ des,y () T os (D’ ©)

where &, is the Fermi energy and the quantity ¢ is a vanishingly small parameter that determines
the integration path at poles. The functions s, (x) are defined as

nz + N arcsin(x)

Sy (X) = (10)
The variable x is related to the classical nucleon angular momentum A. The quantities C,,

in Eq. (9) are classical limits of the Clebsh-Gordan coefficients coming from the angular
integration. In principle the integer N takes values between —L and L, however only the

coefficients C;, where N has the same parity as L are nonvanishing. The coefficients Q')(x)
appearing in the numerator of Eq. (9) have been defined in Ref. [5], they are essentially the classical

limit of the radial matrix elements of the multipole operator 7* and can be evaluted analytically for
any L.

The function S, (s) in Eq. (7) gives the moving-surface contribution to the response. With
the simple interaction (6) this function can be evaluated explicitly as [8]

RS [20(8)+ Kk, 0R" R} (5)T* (11)

S —_—— bl
1) 1=k, RL(8) [Cp = 2 (1=, R ()] + 6, R[] (5) + 0, R" T

with C; =R (L~1)(L+2)+(C,),p> 0 ~1MeVfm™ is the surface tension parameter obtained
from the mass formula, XY, Bives the Roulbmbuowntribution to the restoring force and

0, =4/ 4T”R3 is the equilibrium density. The functions y,(s) and g, (s) are given by [7]

04 1 = N=L ()"0 (x)

0 — e——
2= ngNg (Cu)? [ s, (x) () (12)
and
__9_A . 2 ¢l 2 1
Hals)= 2”5F(s+lg)§(cm) [ dxx PRy (13)

their structure is similar to that of the zero-order propagator (9).

We refer to the papers [5 - 8] for further details on the formalism and discuss here only the
main points.

Equation (11) is the main result in the present context. Together with Eqs.(6) and (7), this
equation gives a unified expression of the isoscalar response function, including both the low- and
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high-energy collective excitations. By comparing the fixed- and moving-surface response functions,

we can appreciate the effects due to the coupling between the motion of individual nucleons and the
surface vibrations.

3. Isoscalar collective modes in heavy nuclei

We apply our theory to study isoscalar collective excitations in heavy spherical nuclei. The
strength function S, (E) associated with the response function (7) is defined as (E = i)

SL<E)=—;‘[-ImzéL(E). (14)

We discuss here the isoscalar monopole, quadrupole and octupole strength distributions. We
determine the strength «, of the residual interaction (6) phenomenologically, by requiring that the

peak of the high-energy resonance agrees with the experimental value of the giant multipole
resonance energy.

First we study the isoscalar monopole response of spherical nuclei. In the case of the
monopole excitations the radial dependence of the external field should be taken as 72, so that the
response function (7) is slightly modified at L=0. In Fig. 1 the monopole strength function
§;.0(E) is shown in different approximations. The zero-order monopole strength (9) (the dotted
curve in Fig.1), which is similar to the quantum single-particle strength, is distributed at the
energies higher than a threshold energy hw,,,. This comes from the fact that there is a gap in the
monopole single-particle frequency spectrum which expands from s,, =7 (or in frequency units
@, = 7Ve/R) to infinity, see Eq. (10) at N=0 and n=1. The moving-surface zero-order
response (the dashed curve in Fig.1), given by Eq. (7) at x,_, =0, has one resonance situated inside

of the gap. The moving-surface assumption corresponds to taking into account an attractive
effective interaction in the surface region which leads to a collective monopole mode with

frequency smaller than @,, [6]. In the case of a system with 4 =208 nucleons and R =1,24"
shown in Fig. 1 the monopole resonanse energy is equal to i =14,8 MeV.
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The found monopole mode exhausts about 99% of the energy- weighted sum rule
associated with the monopole operator that for a system with a sharp surface is given by [9]

deES(E)_ih—ZARZ. (15)
107 m

We get that, already in the moving-surface zero-order approximation; we have achived a
resonable reproduction of the energy of the isoscalar giant monopole resonance (IGMR) in nucleus

*®Pb which amounts to E'“® ~14,2MeV [10]. Moreover the moving-surface zero-order
approximation gives a good reproduction of the systematic behaviour of the energy of the IGMR as

a function of the mass number 4 given by E™* ~824™°MeV [1]. By using the equation for the
eigenfrequencies of the collective modes in the moving-surface zero-order approximation given by

CL=2.(s)=0 (16)

we can find that the energy of the first monopole mode amounts to s, =0,62 or in energy units

ho ~884™°MeV. Finally, the solid curve in Fig.1 displays the monopole response given by
Eq. (7) with including the residual interaction of the monopole-monopole type

Vi_o(r, ) = Kot (17)

The strength «,_, of the interaction, chosen in order to reproduce the experimental value of

the IGMR energy in ** Pb, is x,_, ~—2-10"* MeVfm™. The giant resonance found in the moving-
surface zero-order approximation (the dashed curve) is shifted to smaller energy that is equal to the
IGMR energy in ** Pb.

We notice that the width of the IGMR is underestimated by our theory. The Landau
damping of the monopole mode given by the response function (14) is absent and the width shown
in Fig. 1 (the dashed and solid curves) is only due to the smearing parameter & =0,1 MeV that was
used in the calculations. This result agrees with the one obtained in the quantum RPA calculations
for the heavy nuclei, where the fragmentation width (the Landau damping) is small or wholly
absent, depending on the used isoscalar interaction [11, 12]. The description of the widths of the
collective modes in nuclei must also includes the contribution from the two-body collisions. Taking
into account of the collisional damping makes it possible to explain about 30% of the observed
width of the IGMR [13, 14]. The description of the full width of the IGMR was achieved recently in
paper [4] by involving both the collisional damping and non-linear effects associated with coupling
between the motion of nucleons and the surface vibrations of different multipolarity

In Fig. 2 we display the quadrupole strength function (L = 2 in Eq (7)) obtained for
A =208 nucleons by using different approximations [8]. The dotted curve is obtained from the
zero-order response function (9), it is similar to the quantum response evaluated in the single-
particle approximation. The dashed curve is obtained from the collective fixed-surface response
function (8). Comparison with the dotted curve clearly shows the effects of collectivity. The
collective fixed-surface response has one giant quadrupole peak. Our result for this peak is very
similar to that of the recent random-pase approximation (RPA) calculations of [15]. However,
contrary to the RPA calculations, there is no signal of a low-energy peak in the fixed-surface
response function. The solid curve instead shows the moving-surface response given by Eq ().
Now a broad bump appears in the low-energy part of the response and a narrower peak is still
present at the giant resonance energy. Of course the details of the low-energy excitations are
determined by quantum effects, nonetheless the present semiclassical approach does reproduce the
average behaviour of this systematic feature of the quadrupole response.
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We finally notice that the width of the giant quadrupole resonance is underestimated by our
approach, this is a well known limit of all mean-field calculations that include only Landau
damping. A more realistic estimate of the giant-resonance width would require including a collision
term into our kinetic equation.

In Fig. 3 we show the octupole strength function (L =3 in Eq. (7)) [16]. The zero-order
octupole strength function (dotted curve) is concentrated in two regions around 8 and 24 MeV. In
this respect our semiclassical response is strikingly similar to the quantum response, which is
concentrated in the 12@w and 3h® regions. This concentration of strength is quite remarkable
because our equilibrium phase-space density, which is taken to be of the Thomas-Fermi type, does
not include any shell effect, however we still obtain a strength distribution that is very similar to the
one usually interpreted in terms of transitions between different shells.
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Fig. 2. The same as in Fig. 1 for the quadrupole Fig. 3. The same as in Fig. 1 for the octupole
strength function. strength function.

We can clearly see that the collective fixed-surface response given by Eq. (8) (dashed curve)
has two sharp peaks around 20 Mev and 6 - 7 Mev. The experimentally observed [1] concentration
of isoscalar octupole strength in the two regions usually denoted by HEOR (high energy octupole
resonance) and LEOR (low energy octupole resonance) is qualitatively reproduced, however the
considerable strength experimentally observed at lower energy (low-lying collective states) is
absent from the fixed-surface response function. The most relevant change induced by the moving
surface (solid curve in Fig. 3) is the large double hump appearing at low energy. This feature is in
qualitative agreement both with experiment [1] and with the result of RPA-type calculations (see
e.g. [17]). We interpret this low-energy double hump as a superposition of surface vibration and
LEOR.

The moving-surface octupole response of Fig. 3 displays also a novel resonance-like
structure between the LEOR and the HEOR (at about 13 MeV for a system of 4 =208 nucleons).

4. Conclusions

A unified description of the low- and high-energy isoscalar collective response has been
achieved by using appropriate boundary conditions for the fluctuations of the phase-space density
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described by the linearized Vlasov equation. The response functions obtained in this way give a
good qualitative description of all the main features of the isoscalar response in heavy nuclei, i. e.
low-lying quadrupole and octupole collective modes, plus monopole, quadrupole and octupole giant
resonances.

As a further remark we would like to add that the problem of which boundary conditions to
use in the linearized Vlasov equation for finite systems, rather than being a limitation of the
approach, may be seen as a richness of the theory: different boundary conditions allows us to study
different physical properties of the system.
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€IAHNI HAIMBKJIACHYHUI ONMUC I30CKAJISIPHUX
KOJIEKTUBHMX 3BY/DKEHD B SIIPAX

B. 1. AGpocimoB

HaniskiaciyHa Mojeib, IO CMHPAEThCA Ha PO3B’A30K KiHETHYHOro piBHAHHA Bnacosa mia
CKIHYEHHHX CHCTEM 3 PYXOMOIO TOBEPXHEI0, BHKOPHCTOBYETBCS VI BUBYEHHS i30CKAJIAPHUX KOJIEKTHBHHUX
MOJ Yy BaXKHMX COEpUYHHX sApax. 3aBJsSKM BpPaXyBaHHIO 3B’f3KY MK KONMBAHHAMM TOBEPXHI H pyxom
HYKJIOHIB Y paMKax Wi€i MOZie/li BAAEThCS OTPUMATH €AMHUMN ONKC TiraHTCHKUX PE30HAHCIB Ta KOJEKTHBHUX
MOJ 3 Majoo eHepriero 30ymkeHHs. OTPUMaHO aHANITHYHMA BHpa3 i i30CKAIAPHOI MyJIBTUIIONBHOL
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yHKUi BIATYKy, BUKOPHCTOBYIOUH cenapabenbHe HaGIKEHHS 15 3ATMIIKOBOT B3aEMOZIT MK HYK/IOHaMi.
uaiifiena (yHKUis BiArYKy BiATBOPIOE CIOCTePEXyBaHi BIACTMBOCTI i30CKANAPHOrO (MOHOMOJBHOIO,
KBaJPYMOJILHOTO Ta OKTYMNOJIBHOIO) BIAryKy y Ba<kuX simpaX. Hespakaroun Ha Te, 10 06OMOHKOBI edekTH
HE BPaXOBYIOThCA SIBHO B MOJEJN, OTPHMaHi HATIBKIACHYHI {30CKAIfAPHI My/IBTHIONBHI GyHKUiT BiAryky
noAiGHi 1o kBanToBHX. Lle 06yMOB/IEHO THM, IO iCHYE TICHHH 3B’S30K MiK KJIaCHYHHMH TPAacKTOPISMHU Ta
000I0HKOBOIO CTPYKTYPOIO.

EJAHOE IOJYKJIACCHYECKOE OIIMCAHME H30CKAJIIPHBIX
KOJUIEKTHUBHBIX BO3BY)XXKIEHHUU B SIIPAX

B. K. A6pocamos

Ionyknaccuyeckas MoJeNb, KOTOpask HCXOUT M3 PELIEHHs KUHETHYECKOro ypaBHeHus Bracosa s
KOHEYHBIX CHCTEM C NOJBIDKHOH MOBEPXHOCTBIO, MCTIONB3YETCS IS W3YYEHHS W30CKANAPHBIX KOJUIEKTHB-
HBIX MOJ B TSDKE/BIX CepHuecKHX Anpax. braronaps yuery cBsisu Mexmy KoneGaHHSAMH MOBEPXHOCTH H
ABIKEHHEM HYKJIOHOB B PaMKaX 3TO# MOJE/H YaeTCs NOJTy4HTh MHOE OMHCAHHE MMIaHTCKUX PE30HAHCOB
M HH3KOJIEKAUMX KOJUICKTHBHBIX MOA. [lomy4eHO aHanuTHYeCKOe BBIDRKEHHE IS HM30CKAIAPHOM
MyNbTHIIONBHOM (YHKUMM OTKIMKA, HMCIONB3ys cemapaeibHoe TNPHOMIDKEHHE JUIS  OCTATOYHOrO
B3aHMOJEHCTBUA MeX1y HykioHamu. HalineHHas (yHKUMS OTKIMKAa BOCHPOM3BOIMT HaGIOHAEMBbIE
CBOWCTBA H30CKANIIPHOTO (MOHOMOJIBHOTO, KBaJPYNONLHOTO H OKTYMOJBHOrO) OTKIMKA TSDKEBIX SIep.
Xotst obonodednsie G(eKTHl HE YUMTBHIBAIOTCS SBHO B MOMEIM, MONYYEHHBIE IONYK/IACCHYECKHE
M30CKAJISPHBIE MYJIBTHIIONbHBIE QYHKUMH OTKIMKA TMOXOXH Ha KBAHTOBBbIE. DTO MPOUCXOHUT MOTOMY, UTO
MMEETCS TECHAS B3aHMOCBA3b MEXKIY K/IACCHYECKMMHU TPAEKTOPHSMH U 0G0JI0YEUHOM CTPYKTYPOi.
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