![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Application of the extended Tomas – Fermi method for investigation of properties of light atomic nuclei with neutron excess
V. A. Nesterov1
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: The extended Tomas - Fermi method has been applied for computing of integral characteristics of the nuclei with Z = 4 - 8, placed near the β-stability line. It has been concluded that in such nuclei nucleons are moving in the smooth fields and methods, based on the smooth average fields conception, which cannot be used for the nuclei with N ≈ Z, are applicable for properties description of isotopes with high neutron excess.
References:1. Filippov G. F. Microscopic theory of collective resonances of light nuclei. Riv. Nuovo Cim. 12 (1989) 1. https://doi.org/10.1007/BF02742986
2. Wurzer J., Hofman H. M. Structure of Helium isotopes 4He - 8He. Phys. Rev. C 55 (1997) 688. https://doi.org/10.1103/PhysRevC.55.688
3. Suzuki Y., Varga K., Lovas R. G. Microscopic multicluster description of neutron-halo nuclei with stochastic variational method. Nucl. Phys. A 571 (1994) 447. https://doi.org/10.1016/0375-9474(94)90221-6
4. Karataglidis S., Dortmans P. J., Amos K., Bennhold C. Alternative evaluations of halos in nuclei. Phys. Rev. C 61 (2000) 024319; nucl-th/9811045. https://doi.org/10.1103/PhysRevC.61.024319
5. Navratil P., Barrett B. R. Large-basis shell-model calculations for p-shell nuclei. Phys. Rev. C 57 (1998) 3119. https://doi.org/10.1103/PhysRevC.57.3119
6. Zhukov M. V., Danilin B. V., Fedorov D. V. et al. Bound state properties of Borromean halo nuclei: 6He - 11Li. Phys. Rep. 231 (1993) 151. https://doi.org/10.1016/0370-1573(93)90141-Y
7. Zhukov M. V., Danilin B. V., Ershov S. N. et al. Dynamical multicluster model for electroweak and charge-exchange reactions. Phys. Rev. C 43 (1991) 2835. https://doi.org/10.1103/PhysRevC.43.2835
8. Csoto A. Neutron halo in 8He in a microscopic model. Phys. Rev. C 48 (1993) 165. https://doi.org/10.1103/PhysRevC.48.165
9. Obayashy Y., Varga K., Suzuki Y. Microscopic multicluster description of the neutron-rich helium isotopes. Phys. Rev. C 50 (1994) 189. https://doi.org/10.1103/PhysRevC.50.189
10. Danilin B. V., Tompson L. J., Zhukov M. V. et al. ßäåðíàÿ ôèçèêà 64 (2001) 1290.
11. Filippov G. F. On natures of halo in light nuclei. ßäåðíàÿ ôèçèêà 64 (2001) 1311.
12. Skyrme T. H. R. The effective nuclear potential. Nucl. Phys. 9 (1958-1959) 635. https://doi.org/10.1016/0029-5582(58)90345-6
13. Nguyen Van Giai, Sagawa N. Nucl. Phys. A 371 (1981) 1. https://doi.org/10.1016/0375-9474(81)90741-7
14. Bartel J., Quentin P., Brack M. et al. Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386 (1982) 79. https://doi.org/10.1016/0375-9474(82)90403-1
15. Dobaczewski J., Flocard H., Treiner J. Nucl. Phys. A 422 (1984) 103. https://doi.org/10.1016/0375-9474(84)90433-0
16. Tondeur F., Brack M., Farine M., Pearson J. M. Nucl. Phys. A 420 (1984) 297. https://doi.org/10.1016/0375-9474(84)90444-5
17. Chabanat E. Interactions efffectives pour des conditions extremes d'isospin, Univ. Claude Bernard Lyon-1, Thesisi 1995, LYCEN T 9501, unpublished.
18. Hohenberg P., Kohn W. Inhomogeneous Electron Gas. Phys. Rev. 136 (1964) B864. https://doi.org/10.1103/PhysRev.136.B864
19. Brack M., Guet C., Hakanson H. -B. Physics Reports 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5
20. Brack M., Bhaduri R. K. Semiclassical Physics (Addison-Wesley, 1997).
21. Audi G., Wapstra A. H. The 1993 atomic mass evaluation: (I) Atomic mass table. Nucl. Phys. A 565 (1993) 1. https://doi.org/10.1016/0375-9474(93)90024-R