Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2001, volume 2, issue 4, pages 105-110.
Section: Plasma Physics.
Published online: 30.12.2001.
PDF Full text (en)
https://doi.org/10.15407/jnpae2001.04.105

Reduced MHD equations for Alfven eigenmodes in stellarators

O. P. Fesenyuk1, Ya. I. Kolesnichenko1, H. Wobig2, Yu. V. Yakovenko1

1Institute for Nuclear Research of the National Academy of Sciences of Ukraine
2Max-Planck Institut für Plasmaphysik, IPP-EURATOM Association, Garching bei München, Germany

Abstract: Reduced magnetohydrodynamic (MHD) equations are derived, in which the plasma compressibility is taken into account, but fast magnetoacoustic waves are excluded. For the sake of simplicity all terms associated with the pressure gradient and the plasma current are disregarded. However, the continuous spectrum of the obtained equations is shown to coincide exactly with the continuous spectrum of the full MHD equations. First results of the code COBRAS (COntinuum BRanches of Alfvén and Sound waves) intended for calculation of coupled Alfvén and slow continua, are presented. Effect of the compressibility on the Alfvén continuum in Wendelstein-line stellarators is studied.

References:

1. J. P. Goedbloed. Phys. Fluids 18 (1975) 1258. https://doi.org/10.1063/1.861012

2. M. S. Chu, J. M. Greene, L. L. Lao, A. D. Turnbull, and M. S. Chance. Phys. Fluids B 4 (1992) 3713. https://doi.org/10.1063/1.860327

3. A. D. Turnbull et al. Phys. Fluids B 5 (1993) 2546. https://doi.org/10.1063/1.860742

4. G. T. A. Huysmans, W. Kerner, D. Borba, H. A. Holties, and J. P. Goedbloed. Phys. Plasmas 2 (1995) 1605. https://doi.org/10.1063/1.871310

5. C. Nührenberg. Phys. Plasmas 6 (1999) 137. https://doi.org/10.1063/1.873268

6. C. Nührenberg. In ISSP-19 "Piero Caldirola", Theory of Fusion Plasmas, J. W. Connor, O. Sauter, and E. Sindoni (Eds.) (SIF, Bologna, 2000) p. 313.

7. Ya. I. Kolesnichenko, V. V. Lutsenko, H. Wobig, Yu. V. Yakovenko, and O. P. Fesenyuk. Phys. Plasmas 8 (2001) 491. https://doi.org/10.1063/1.1339228

8. B. Coppi, S. Migliuolo, and F. Porcelli. Phys. Fluids 31 (1988) 1630. https://doi.org/10.1063/1.866702

9. E. Hameiri. Phys. Fluids 24 (1981) 562. https://doi.org/10.1063/1.863410

10. C. Z. Cheng and M. S. Chance. Phys. Fluids 29 (1986) 3695. https://doi.org/10.1063/1.865801

11. C. E. Kieras and J. A. Tataronis. J. Plasma Phys. 28 (1982) 395. https://doi.org/10.1017/S0022377800000386

12. Ya. I. Kolesnichenko, H. Wobig, Yu. V. Yakovenko, and J. Kisslinger. "Alfvén continuum in stellarators: general analysis and specific examples", this conference.

13. R. L. Dewar and A. H. Glasser. Phys. Fluids 26 (1983) 3038. https://doi.org/10.1063/1.864028