![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Stationary self-focusing of whistler waves in the ionosphere
T. A. Davydova, Yu. A. Zaliznyak, A. I. Yakimenko
Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv, UkraineAbstract: Possibility of the formation of two-dimensional coherent structures - whistler waveguides - during the active ionospheric experiments is investigated both analytically and numerically. It was shown that the lowest threshold for formation of such waveguides corresponds to wave frequency in the vicinity of the half electron cyclotron frequency. Thermal self-interaction (plasma displacement from the high pressure region and wave beam trapping into the formed channel) plays essential role for formation of the waveguides. To describe appearance and evolution of the stationary channels, the generalization of 2D nonlinear Schrödinger equation was proposed. Stability of two-dimensional structures was proved analytically and numerically.
References:1. Жарова Н. А., Сергеев А. М. О стационарном самовоздействии вистлеров. Физика плазмы 15 (1989) 1175.
2. Anderson D. Variational approach to nonlinear pulse propagation in optical fibers. Physical Review A 27 (1983) 3135. https://doi.org/10.1103/PhysRevA.27.3135
3. Davydova T. A., Zaliznyak Yu. A. Chirped Solitons Near Plasma Resonances in Magnetized Plasmas. Physica Scripta 61 (2000) 476. https://doi.org/10.1238/Physica.Regular.061a00476
4. Петвиашвили В. И. Об уравнении необыкновенного солитона. Физика плазмы 2 (1976) 469.
5. Taha T. R., Ablowitz M. J. Analytical and numerical aspects of certain nonlinear evolution equation. II. Numerical, nonlinear Schrödinger equation. Journal of Computational Physics 55 (1984) 203. https://doi.org/10.1016/0021-9991(84)90003-2
6. Bharuthram R., Shukla P. K., Stenflo L. et al. Generation of coherent structures caused by ionospheric heating. IEEE Trans. Plasma Science 20 (1992) 803. https://doi.org/10.1109/27.199531