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STATIONARY SELF-FOCUSING OF WHISTLER WAVES IN THE IONOSPHERE
T. A. Davydova, Yu. A. Zaliznyak, A.I. Yakimenko

Possibility of the formation of two-dimensional coherent structures - whistler waveguides - during
the active ionospheric experiments is investigated both analytically and numerically. It was shown that the
lowest threshold for formation of such waveguides corresponds to wave frequency in the vicinity of the half
electron cyclotron frequency. Thermal self-interaction (plasma displacement from the high pressure region
and wave beam trapping into the formed channel) plays essential role for formation of the waveguides. To
describe appearance and evolution of the stationary channels, the generalization of 2D nonlinear Schrodinger
equation was proposed. Stability of two-dimensional structures was proved analytically and numerically.

1. Introduction

Plane whistler waves which propagate along the magnetic field B=(0,0,B,) are fully elec-
tromagnetic right — hand polarized waves having k =0, E, =0. However, when the direction of
propagation deviates from OZ axis, or when the wave beam is localized in transverse plane, these
properties disappear. Together with nonzero k, whistler wave obtains elliptic polarization (which

can be assumed as a presence of left — hand polarized part of wave field) and the electrostatic wave
component ( £, # 0). Here we consider propagation of beams of whistler waves with frequencies

near the half of electron cyclotron frequency (@ ~ @y, /2) along the magnetic field in the iono-

sphere. The main nonlinear equation goveming this propagation is a Generalized Nonlinear
Schrodinger Equation (GNSE)

K
15%+DALW+P&M+BW|W|2 +Ky |y ['=0, M

where A, =8°/0&2+8*/on’ , y =E, I F,, F, =W, 6 ~2m/M , ¢ =zo,/c, & =xw,/c,
n=yo,fc, ®,~oy[2, and the coefficients of equation are: D= (1/(4u*) 71)/(2«/;) )
P = 1/(8v\/;) , B==v", K=y} [0k, u=wfw, , v =, /a)é . Here v, is the frequency of
electron collisions, n, is the density of electrons, 7' is the electron temperature. Equation (1) gener-

alizes Eq. (1) of [1] into the case of 2D geometry and takes into account a nonlinearity saturation
effects. The main nonlinear effect in the ionosphere is the plasma extrusion from the HF field re-
gion due to heating and pressure increasing. Near the point @ =~ @, /2 the thresholds of modula-
tion instabilities for whistler waves decrease dramatically, and one must account for the next terms
in the nonlinearity expansion which are of the same order as the linear terms. It leads to an appear-
ance of cubic — quintic saturable nonlinearity in the GNSE (1). In this paper we consider the case
u <1/2, which means » < w,, /2 and the signs of GNSE coefficients are the following D>0, 7> 0,
B <0, K> 0. We are interested to find conditions for whistler waves propagation in stationary
waveguides or channels localized in the plane perpendicular to direction of propagation — OZ axis,
which are formed due to nonlinear self-interaction. Profiles of wave intensity and density perturba-
tion in perpendicular plane in such waveguides do not depend on z.

2. General properties of nonlinear whistler waveguides

Equation (1) has integrals:
number of quanta

N=[llyp a7, )
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momentum
AT k2 ()
angular momentum
M=*—jj( [Fx Vyl-ylF xVy )7, 4
and Hamiltonian
H=H[DIW|2P|Alw|2—§|w|“~§!w|°]d%*. (5)

Stationary (along OZ axis) waveguides in the framework of (1) has a form y(F)ezp(iic).
where complex function y(7) obeys partial differential equation

~Ay+DAy + PNy + By |y P+ Ky [y | =0. (6)
Multiplying (6) by " and integrating, an integral relation
AN=P[f|ay P dF-D[[V.y P d’F+B[wl' @7 +K[[y[ d'F ™

is obtained. Multiplying (6) by > dy */dr , integrating and adding the complex conjugate, another
integral identity is found

AN==P[flA [ d2r+—IJ'1w| d2"+—ﬂlrx/| d’F . )

The restriction on parameter A: A< ~ D*/4P can be found from the linear asymptotical

behavior of any localized solution. After excluding 4 from (7) - (8) one finds simplified expression
for a Hamiltonian of solitary solutions

H=P[[DIAY P &7 + X [l a7 =2 [[ 9y baF -2 [y 7. ©)

From (9) it follows immediately that for D> 0, P> 0, B <0, K> 0 which is the case under consid-
eration Hamiltonian functional is always positive. Using the integral inequalities

Ivp dF <N"(flay P a%7)", (10)

flwl* @ <N"(fly [ d%)" an

we found the following estimation for Hamiltonian of solitary states

0<H<DN"(f syl d%) -P[ayP 1"2(jl a)" -

K s gip <« N[ 2 ;_B_z 12
——3—-j|w]dr<41: }

P 4.K
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It indicates that for fixed value of number of quanta N, a Hamiltonian functional is bounded from
below and above. For every N it guarantees the existence of at least one stable solitary solution
which corresponds to Hamiltonian's extremum.
Using integral inequalities (10) and (11) and the identity (7) it is easy to show that the
waveguide parameter A is bounded from below and to estimate a range of accessible 4 — values:
2 2 2
W Lape. .1y (13)
4P 4K 4P

From the virial relation for waveguide's effective width
r =N [Tt |y P rdrde,

namely, from

Cry o oo pldvl 2 cpeld L
N e =8 D f_dr— rdr—4DP ['|A y| rdr +4P EEM’ rdr |-

2
~—I%D~ f|qy\4 m:z'arw—[%}:2 Dyf‘ﬁ rdr—3BPfr %‘i—/— [Ed;lyxf}rdr— (14)

_PK fr(%'wf]{ﬂw'z £ [%'Wﬂz}a’r,

one finds that: (i) When P = K = 0, GNSE (1) with B D < 0 has no localized solutions at all, any
wave packet will spread out; in the case P = K =0, BD > 0 virial relation gives

ay
ar

dZ 2.
J\r—dfgi - 8DH
G

and predicts collapsing of any wave packet with DH < 0. (ii) The sum of all linear terms in the
virial relation acts defocusing, thus any linear wave packet described by the linear GNSE will also
always spreads out. (iii) In the case of GNSE (1) with D > 0, B <0, P> 0, K > 0 virial relation in-
cludes focusing (proportional to KD > 0 and to BP < 0) and defocusing (proportional to BD < 0 and
PK > 0) nonlinear terms, different linear and nonlinear terms come into play at different spatial
scales and on different values of field amplitude, thus it is natural to expect that several different
stationary nonlinear structures may coexist in the framework of GNSE (1).

3. Variational analysis

In the framework of the variational approach [2] the GNSE (1) is formulated as a variational
problem for functional L

§{Ldz=0, (15)

where L = Ild 27 and I is the Lagrangian density of (1). In the cylindrical coordinates (r,d, z) [
2
} p
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may be written as
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Here we use trial function in the form:
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Wz-f{_z%j}(yr)exp[fy Incosh ur+il@+ip(2)], (17)

H

where IP = f§ FAEAE, u=mz), y=y(z), and phase ¢(z) are adjustable functions to be

found from variational procedure, and real function f,(£)determines the envelope profile

5 it
cosh(&)

This function describes soliton — like modes at / = 0 or vortex — like azimuthal modes at / # 0. The
nonlinear phase dependence on » — coordinate for this function is fixed to be ~iy Incosh 7, as it

was in the case of 1D exact chirped soliton solution [3]. After performing of a Ritz optimization
procedure, the waveguide parameters u and f=y-u are obtained from the canonical Hamilto-

nian set of equations

5(&)= (18)

ap_oH
d 0
n H (19)
du __oH
dn o8’
where
1 )
=— | p (z)hdz',
e f u(z)
and Hamiltonian
Q
5 N} DI u 2+J“Jﬁ) 1, LIS RNS Nt - P(I9u* + 19W2 B2 +198°)].  (20)
iy 3
Integrals /¢ are defined by a choice of trial function
e}
e { 2, @} dg; 10 =[ @b @dg 19 =19 =10;
1
) 4 NS (s S -y
ey ;;p ¢ r©ag I (2;”5))2 [er@as
2 @ +DtanheY . i
I3 = e d¢; 1, =| &tanh® & £ (£)ds;
TER (6)( b ; & [ ,
i =104
Stationary points of the system (19) coincide with the Hamiltonian (5) extrema
Qg ={; @ 20_ (21)
aﬁ H=pg, B=p 6;: n=piy. =y

These points determine the waveguide parameters u, and S, for a given number of quanta N. In-
troducing parameters
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one gets for the waveguides with B =0 the following relation connecting u* and N:

DIV+|B|IPN/2 | 24

2 =
AN T T T i
where
) 3 BIU) EP[(!)
#(?max = Djd(lf) I+J1+_(—b(f}r)_§—p(§)“ i (25)
4P1p1 4(DI, ) K1,

For the stationary solutions with 3, # 0, /= 0 another relation is obtained
e DY 1-N/N, 26)
T PAD - TD1-(VIN,)

K|

pi _pI® DI
2(N =0)= 4 : o= He (N =0). i
Juf,( ) P(IS) —!S?) b PIS;} > QPIS]}) Au(]( )
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()
Fig. 1. N versus yz, d =I§’,}, Po =1§f§-
(A4): for the case Ny <Ny, (0 < 1); (B): for the case Ny > NV, (0 >1).

A stationary solution is stable under the variation of two parameters — § and u —if it gives
maximum or minimum to Hamiltonian and it is unstable when corresponds to the Hamiltonian sad-
dle point. The stability criterion in the framework of our variational approach is
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>0. (28)

,_OHOH (2H Y
op* ou* \opou

B=Py, p=uy

The qualitative dependencies of N on u; for waveguides with 3, =0 (marked "O") and for
B, #0,1=0 (marked "C") are plotted in the Fig. 1. Dashed line indicates the region where B* <0
and waveguides with f; # 0 can not exist. Stable and unstable branches are marked in the figure

by "S" and "US" respectively. It is seen that variational approach with a trial function (17) predicts
a bistability phenomenon for stationary waveguides propagation states — the coexistence of two
waveguides with the same A but with different numbers of quanta and amplitudes (see Fig. 1 (4) in

the region (d/pa, ;meax). The bistability conclusion also will be confirmed by the direct numerical
solution of stationary and nonstationary equations in the next section.

3. Numerical modeling
In order to perform a numerical modeling of GNSE waveguides, it is more convenient to use

it in a fully 3D form in Cartesian coordinates (x, y, z). This equation has no peculiarity at the point
r = 0. After the standart rescalings, the equation takes a form

)
fa—gwiwm’iw—wlwlz +Ky |y |'=0, (29)

where K — KD?/PB’. Stationary (along OZ) solutions have a form y(&,7,¢) = w(&,n)exp(ids)
and obey partial differential equation

—Ay+Aw+Ny-viy| +Ky|y|'=0. (30)
N8 N %0 .
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Fig. 2. An energy dispersion diagram for stationary soliton-like (/ = 0, case (4)) and vortex — like (I=1,
case (B)) solutions of GNSE. Numerical result. Dashed lines indicate N(4) dependencies predicted
by the variational approach. Here D=P =-B=1.

An equation (30) was integrated numerically using the relaxation process in the Fourier
space which is a generalization of well — known stabilizing multiplier method [5]. To check the sta-
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bility of the structures, the evolutionary equation (29) was also integrated numerically by a standart

split step Fourier method [5].

Simulation results are presented in a form of energy dispersion diagrams (EDD) — depend-
encies N(A). EDD for soliton — like (! = 0) and vortex — like (/ = 1) nonlinear structures for differ-

ent values of X are plotted in Fig. 2 (4), (B).
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Fig. 3. Stable stationary radially — symmetric soliton — like (/ = 0, case (4), 2 =-1.89) and
vortex — like (! = 1, case (B), A =-2.10) solutions of GNSE with D =P=-B=1,K=0.1.

It is seen that soliton — like and vortex — like waveguides exist inside the restricted (both in
N and in A) area and the size of their existence domain decreases when K increases. At every soli-
tary or vortex branch there exists a range of 4 — values, where our numerical simulations confirm
the variational conclusions about the bistability of stationary waveguide propagation states in the
sense of coexistence of two states with the same A but with different energies (numbers of quanta)
and spatial scales. Examples of bistable soliton — like and vortex — like states are presented in Fig. 3

(4), (B).
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Fig. 4. The minimum possible value of 4 where
soliton — like (! = 0) and vortex — like (/ = 1)
waveguides exist versus K. Here D=P=-B= 1.
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A numerical verification of stationary
waveguide stability showed that all found
waveguides with / = 0 and / = 1 are stable even
with respect to sufficiently high symmetric and
asymmetric  perturbations. Their parameters
(width, amplitude, etc.) oscillate nonlinearly in
the vicinity of the stationary point. A conclusion
about the waveguide stability does not depend on
a sign of 6N /64 derivative in contrast to well-
known Kolokolov-Vakhitov criterion which is
valid for GNSE with P =0. When the parameter
K exceeds some threshold value K., localized

solutions of Eq. (30) disappear.

It was also confirmed numerically that
soliton parameter A is bounded from below, for
every K there exists some minimum value of

A=A, (seeFig.4).

min
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Conclusions

A propagation of whistler wave beams along the magnetic field lines with the frequencies
near the half electron gyrofrequency (@ ~ @, /2 ) in the ionosphere is described by the single non-
linear Schrodinger equation (1) for the parallel electric field component. This equation includes
term ~ PALE, init's linear part.

The main nonlinear effect in the ionosphere is the plasma extrusion from the HF field region
due to heating and pressure increasing. Near the point @ ~ @, /2 the thresholds of modulational

instabilities for whistler wave decrease dramatically, and one must account for the next terms in the
nonlinearity expansion which are of the same order as the linear terms. It leads to an appearance of
cubic — quintic saturable nonlinearity in the GNSE (1).

In the considered case D> 0, P> 0, B <0, K > 0, the Hamiltonian of GNSE (1) is bounded
from below and above for every &, which indicates that there exists at least one stable solitary solu-
tion which corresponds to the Hamiltonioan's exact extremum.

The sum of all linear terms in the virial relation for waveguide's effective width acts defo-
cusing, which indicates that any linear wave packet described by linear GNSE (1) always spreads
out. At the same time nonlinear part of virial relation includes focusing, as well as defocusing
terms. It may result in a coexistence of several stationary nonlinear structures with different spatial
scales in the framework of Eq. (1).

Variational approach with the trial function (17) predicts a bistability phenomenon for the
stationary waveguide propagation states: the coexistence of two stable solutions with different ener-
gies (numbers of quanta N) and spatial scales for the same value of nonlinear shift of wavenumber
A . It also predicts that the sign of derivative 8N/04 may change within the region of stability, thus

a commonly used Vakhitov-Kolokolov criterion (which works for GNSE with P = 0) in the consid-
ered case P > 0, K > 0 can not be applied.

Direct numerical integration of stationary (with respect to z) (Eq. (6)) and nonstationary (Eg.
(1)) equations showed that there really exist soliton-like (with zero topological charge) and vortex-
like (first azimuthal mode / = 1) stable nonlinear waveguides. Simulations found exactly the bista-
bility regions for waveguides (see Fig. 2). All stationary solutions were shown to be stable even
with respect to sufficiently high symmetric and asymmetric perturbations of initial state.

As it was pointed out in [6], some data conclusively show the formation of regular structures
during ionospheric heating experiments. Our theoretical investigation gives possible explanation of
such phenomena.
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CTAHIOHAPHE CAMO®OKYCVYBAHHS BICTJIEPIB B IOHOC®EPI
T. O. Jaeapora, 0. O. Banizaak, O. I. Axumenko

AHaliTHYHO Ta 4YHCEJABHO JOCTIKCHO MOMUIMBICTD YTBOPECHHS [BOBHMIPHHX KOTEPEHTHHX
CTPYKTYp ~— XBWJIEBOJNHHX KaHaliB BiCTVIEPIBCBKHMX XBHJIb, IO CIIOCTEPIralMch Mif 4Yac AaKTHUBHUX
eKCIIepUMEHTIB B ionocdepi 3emiti. MiHiMaNIbHOMY MOPOry YTBOPEHHS TAKHX CTPYKTYD BIATOBIJA€ 4acTOTA
XBWJIi, IO MOPIBHIOE MOMOBMHI eleKTPOHHOI Tipovactord. CyTTeBy posib B iX YTBOPEHHI Ipae Terosa
CaMOB32€MOIisi — BHJABMIOBAHHA YACTHHOK i3 0GJacTi MiABMINEHOr0 THUCKY NPH po3irpiBaHHi IUIa3MH
MYyYKOM €JIEKTPOMArHiTHUX XBHJIb Ta 3aXOIUIEHHS IMydKa B KaHas, UI0 YTBOPROEThCs. [lokasaHo, LIO
YIBOPEHHs CTaliOHADHMX KAaHAIIB OMMCYETbCA [BOBHMIPHUM HediniiHum piBusunam [lpeninrepa.
AHaiTHYHO Ta YHCELHO JOBEAEHO CTIHKICTh TAKMX CTPYKTYP.

CTAITMOHAPHASI CAMO®OKYCHPOBKA BHCTJEPOB B HOHOC®PEPE
T. A. XaBwigoBa, FO. A, 3amzuak, A. . Axumenko

AHanUTHYECKH M YHC/IEHHO HCCIe/IOBaHa BO3MOXHOCTh 0Opa3soBaHHs JBYMEpPHBIX KOIE€pPEHTHBIX
CTPYKTYpP — BOJHOBOJHBIX KaHAJIOB BHCTJIEPOBCKMX BOJIH, KOTOpEIE HabMONAnMCh BO BpEeMS aKTUBHBIX
9KCnepUMeHTax B HoHochepe 3emin. MUHUMaIBHOMY [TOPOry 06pa3oBaHus TaKUX CTPYKTYpP COOTBETCTBYET
4acTOTa BOJIHBI, pPaBHAfA IIOJOBHHE 3JICKTPOHHOH rupouactothl. CyILECTBEHHYIO ponib B MX 0Opa3oBaHHH
UTPAET TEIUIOBOE CAMOB3aMMOMAEHCTRYE — BhIIABIMBAHME YACTHII M3 OONACTH MOBBIISHHOrO JABIEHHS MPH
Harpese IUIa3MBbl ITyYKOM 3JIEKTPOMATHHTHBIX BONH M 3aXBaT Iy4ka B oOpasopasmiuiics kasHai. [ToxasaHo,
uTO 00pa3oBaHME CTAIMOHAPHBEIX KAHAJIOB ONMKCHIBAGTCA MABYMEPHBIM HE/IHMHEWHBIM ypaBHEHHEM
[lpeauHrepa. AHATHTHYECKH U YHMCIIEHHO [OKa3aHa YCTONYHBOCTE TAKHX CTPYKTYP.
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