![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Statistical description of the radiative strength function
V. A. Plujko1, S. N. Ezhov2, A. S. Mikulyak2
1Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv, UkraineAbstract: A closed-form thermodynamic pole approach is developed for average description of the E1 radiative strength functions using the microcanonical ensemble for initial states. A semiclassical description of the collective excitation damping in the method is based on modern physical notion on the relaxation processes in Fermi systems. It is shown that the model is able to cover a relatively wide energy interval, ranging from zeroth gamma-ray energy to values above GDR peak energy. It gives rather accurate means of simultaneous description of the γ-decay and photoabsorption strength functions in the medium and heavy nuclei. For gamma-ray energies near neutron binding energies the calculations within the proposed model describe experimental data somewhat better for heavy nuclei with A > 150 as compared to other closed-form approaches.
References:1. Bartholomew G. A., Earle E. D., Fergusson A. J. et al. Adv. Nucl. Phys. 7 (1973) 229. https://doi.org/10.1007/978-1-4615-9044-6_4
2. Montoya C. P., Schadmand S., Dioszegi I. et al. Z. Phys. A 340 (1991) 371. https://doi.org/10.1007/BF01290324
3. Schadmand S., Varma R., Banerjee S. R. et al. J. Phys. G 21 (1995) 821. https://doi.org/10.1088/0954-3899/21/6/010
4. Snover K. Ann. Rev. Nucl. Part. Sci. 36 (1986) 545. https://doi.org/10.1146/annurev.ns.36.120186.002553
5. Alhassid Y., Bush B. Phys. Rev. Lett. 61 (1988) 1926; https://doi.org/10.1103/PhysRevLett.61.1926
Report No YCTP-N16-88 (Yale University, 1988) 55 p.
6. Gaardhoje J. J. Ann. Rev. Nucl. Part. Sci. 42 (1992) 483. https://doi.org/10.1146/annurev.ns.42.120192.002411
7. Broglia R. A., Bortignon P. F., Bracco A. Prog. Part. Nucl. Phys. 28 (1992) 517. https://doi.org/10.1016/0146-6410(92)90054-6
8. Pierroutsakou D., Auger F., Alamanos N. et al. Nucl. Phys. A 600 (1996) 131. https://doi.org/10.1016/0375-9474(95)00470-X
9. Mattiuzzi M., Bracco A., Camera F. et al. Nucl. Phys. A 612 (1997) 262. https://doi.org/10.1016/S0375-9474(97)80016-4
10. Brink D. M. Ph. D. Thesis (Oxford University, 1955) p. 101.
11. Axel P. Phys. Rev. 126 (1962) 671. https://doi.org/10.1103/PhysRev.126.671
12. Berman B. L., Fultz S. C. Rev. Mod. Phys. 47 (1975) 713. https://doi.org/10.1103/RevModPhys.47.713
13. Dietrich S. S., Berman B. L. Atom. Data and Nucl. Data Tabl. 38 (1988) 199. https://doi.org/10.1016/0092-640X(88)90033-2
14. Lone M. A. Neutron induced reactions: Proc. 4th. Intern. Symp., Smolenice, Czechoslovakia, June, 1985. Eds. J. Kristiak, E. Betak. D. Reidel Publ. Comp. (Dordrecht, Holland, 1986) p. 238. https://doi.org/10.1007/978-94-009-4636-1_26
15. Popov Yu. P. Neutron induced reactions: Proc. Europhys. Top. Conf., Smolenice, June 21 - 25, 1982. Physics and Applications. Vol. 10. Ed. P. Oblozinsky (Bratislava, 1982) p. 121.
16. Grudzevich O. T. Yadernaya Fizika 62 (1999) 227.
17. McCullagh C. M., Stelts M., Chrien R. E. Phys. Rev. C 23 (1981) 1394. https://doi.org/10.1103/PhysRevC.23.1394
18. Kahane S., Raman S., Slaughter G. G. Phys. Rev. C 30 (1984) 807. https://doi.org/10.1103/PhysRevC.30.807
19. Kopecky J., Chrien R. E. Nucl. Phys. A 468 (1987) 285. https://doi.org/10.1016/0375-9474(87)90518-5
20. Kopecky J., Uhl M. Phys. Rev. C 41 (1990) 1941. https://doi.org/10.1103/PhysRevC.41.1941
21. Coceva C. Nuovo Cimento A 107 (1994) 85. https://doi.org/10.1007/BF02813075
22. Kadmenskij S. G., Markushev V. P., Furman V. I. Yad. Fiz. 37 (1983) 277 [Sov. J. Nucl. Phys. 37 (1983) 165].
23. Sirotkin V. K. Yad. Fiz. 43 (1986) 570 [Sov. J. Nucl. Phys. 43 (1986) 362].
24. Kopecky J., Uhl M., Chrien R. E. Phys. Rev. C 47 (1993) 312. https://doi.org/10.1103/PhysRevC.47.312
25. Handbook for calculations of nuclear reaction data. Reference Input Parameter Library (RIPL). IAEA-TECDOC 1034, August 1998, Sci. d. P. Oblozinsky. Ch. 6. The directory GAMMA on the Web site: http://www-nds.iaea.or.at/ripl/
26. Sommermann H. M. Ann. Phys. 151 (1983) 163. https://doi.org/10.1016/0003-4916(83)90318-4
27. Ring P., Robledo L. M., Egido J. L. Nucl. Phys. A 419 (1984) 261. https://doi.org/10.1016/0375-9474(84)90393-2
28. Egido J. L., Weidenmuller H. A. Phys. Rev. C 39 (1989) 2398. https://doi.org/10.1103/PhysRevC.39.2398
29. Wambach J. Rep. Prog. Phys. 51 (1988) 989. https://doi.org/10.1088/0034-4885/51/7/002
30. Yannouleas C., Broglia R. A. Ann. Phys. 217 (1992) 105. https://doi.org/10.1016/0003-4916(92)90340-R
31. Bertsch G. F., Broglia R. A. Oscillations in Finite Quantum Systems (New York: Cambridge University Press, 1994).
32. Plujko V. A. Yad. Fiz. 52 (1990) 1004 [Sov. J. Nucl. Phys. 52 (1990) 639].
33. Bogolyubov N. N., Bogolyubov N. N., Jr. Introduction to Quantum Statistical Mechanics (World Scientific, 1984). [Russian ed. (Moskow: Nauka, 1984)].
34. Kubo R., Toda M., Hashitsume N. Statistical Physics II. Nonequilibrium Statistical Mechanics (New York: Springer-Verlag, 1985) Ch. 4, 5. https://doi.org/10.1007/978-3-642-96701-6
35. Gallardo M., Diebel M., Dossing T., Broglia R. A. Nucl. Phys. A 443 (1985) 415. https://doi.org/10.1016/0375-9474(85)90409-9
36. Ignatyuk A. V. Izv. Akad. Nauk SSSR. Ser. Fiz. [Bull. Acad. Sc. USSR, Phys. Ser. 36 (1972) 202].
37. Brink D. M. Nucl. Phys. A 482 (1988) 3. https://doi.org/10.1016/0375-9474(88)90571-4
38. Plujko V. A. Yad. Fiz. 50 (1989) 1284 [Sov. J. Nucl. Phys. 50 (1989) 800].
39. Eisenberg J. M., Greiner W. Nuclear Theory, Vol. 1, Nuclear Models, Collective and Single-Particle Phenomena (North-Holl., Amsterdam, 1987) Ch. 14, \S \S 3-5.
40. Yukawa T., Holzwarth G. Nucl. Phys. A 364 (1981) 29. https://doi.org/10.1016/0375-9474(81)90431-0
41. Nishizaki S., Ando K. Prog. Theor. Phys. 71 (1984) 1263. https://doi.org/10.1143/PTP.71.1263
42. Myers W. D., Swiatecki W. J., Kodama T. et al. Phys. Rev. C 15 (1977) 2032. https://doi.org/10.1103/PhysRevC.15.2032
43. Kolomietz V. M., Plujko V. A., Shlomo S. Phys. Rev. C 54 (1996) 3014. https://doi.org/10.1103/PhysRevC.54.3014
44. Plujko V. A. Acta Phys. Pol. B 30 (1999) 1383.
45. Kolomietz V. M., Plujko V. A., Shlomo S. Phys. Rev. C 52 (1995) 2480. https://doi.org/10.1103/PhysRevC.52.2480
46. Plujko V. A. Proc. Int. Conf. Nucl. Data Sci. Techn., Trieste, 19 - 24 May, 1997. Eds. Reffo G., Ventura, Grandi C. (Trieste, Italy) Vol. 59, Part 1, p. 705.
47. Landau L. D. Zh. Eksp. Teor. Fiz. 32 (1957) 59 [Sov. Phys. JETP. 5 (1957) 101].
48. Ayik S., Boiley D. Phys. Lett. B 276 (1992) 263; https://doi.org/10.1016/0370-2693(92)90315-U
Phys. Lett. B 284 (1992) 482E. https://doi.org/10.1016/0370-2693(92)90464-F
49. Ayik S., Yilmaz O., Gokalp A., Schuck P. Phys. Rev. C 58 (1988) 1594. https://doi.org/10.1103/PhysRevC.58.1594
50. Li G. Q., Machleidt R. Phys. Rev. C 48 (1993) 1702. https://doi.org/10.1103/PhysRevC.48.1702
51. Li G. Q., Machleidt R. Phys. Rev. C 49 (1994) 566. https://doi.org/10.1103/PhysRevC.49.566
52. Bertsch G. Z. Phys. A 289 (1978) 103. https://doi.org/10.1007/BF01408501
53. Griffin J. J., Dworzecka M. Phys. Lett. B 156 (1985) 139. https://doi.org/10.1016/0370-2693(85)91496-0
54. Bush B., Alhassid Y. Nucl. Phys. A 531 (1991) 27. https://doi.org/10.1016/0375-9474(91)90566-O
55. Dover C. B., Lemmer R. H., Hahne F. J. W. Ann. Phys. 70 (1972) 458. https://doi.org/10.1016/0003-4916(72)90275-8
56. Plujko V. A. Nucl. Phys. A 649 (1999) 209c. https://doi.org/10.1016/S0375-9474(99)00063-9
57. Plujko V. A. Testing and improvements of gamma-ray strength functions for nuclear model calculations of nuclear data. LANL e-print. http://xxx.lanl.gov/abs/nucl-th/9907111
58. Dilg W., Schantl W., Vonach H., Uhl M. Nucl. Phys. A 217 (1973) 269. https://doi.org/10.1016/0375-9474(73)90196-6
59. Kataria S. K., Ramamurthy V. S., Kapoor S. S. Phys. Rev. C 18 (1978) 549. https://doi.org/10.1103/PhysRevC.18.549
60. Von Egidy T., Schmidt H. H., Behkami A. N. Nucl. Phys. A 481 (1988) 189. https://doi.org/10.1016/0375-9474(88)90491-5
61. Hasse R. W., Myers W. D. Geometrical Relationships of Macroscopic Nuclear Physics (Berlin, Heidelberg, New York: Springer-Verlag, 1988). https://doi.org/10.1007/978-3-642-83017-4
62. Moller P., Nix J. R., Myers W. D., Swiatecki W. J. At. Nucl. Data Tables 59 (1995) 185. https://doi.org/10.1006/adnd.1995.1002