Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2000, volume 1, issue 1, pages 7-24.
Section: Nuclear Physics.
Published online: 30.06.2000.
PDF Full text (en)
https://doi.org/10.15407/jnpae2000.01.007

Statistical description of the radiative strength function

V. A. Plujko1, S. N. Ezhov2, A. S. Mikulyak2

1Institute for Nuclear Research of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Kyiv Taras Shevchenko National University, Kyiv, Ukraine

Abstract: A closed-form thermodynamic pole approach is developed for average description of the E1 radiative strength functions using the microcanonical ensemble for initial states. A semiclassical description of the collective excitation damping in the method is based on modern physical notion on the relaxation processes in Fermi systems. It is shown that the model is able to cover a relatively wide energy interval, ranging from zeroth gamma-ray energy to values above GDR peak energy. It gives rather accurate means of simultaneous description of the γ-decay and photoabsorption strength functions in the medium and heavy nuclei. For gamma-ray energies near neutron binding energies the calculations within the proposed model describe experimental data somewhat better for heavy nuclei with A > 150 as compared to other closed-form approaches.

References:

1. Bartholomew G. A., Earle E. D., Fergusson A. J. et al. Adv. Nucl. Phys. 7 (1973) 229. https://doi.org/10.1007/978-1-4615-9044-6_4

2. Montoya C. P., Schadmand S., Dioszegi I. et al. Z. Phys. A 340 (1991) 371. https://doi.org/10.1007/BF01290324

3. Schadmand S., Varma R., Banerjee S. R. et al. J. Phys. G 21 (1995) 821. https://doi.org/10.1088/0954-3899/21/6/010

4. Snover K. Ann. Rev. Nucl. Part. Sci. 36 (1986) 545. https://doi.org/10.1146/annurev.ns.36.120186.002553

5. Alhassid Y., Bush B. Phys. Rev. Lett. 61 (1988) 1926; https://doi.org/10.1103/PhysRevLett.61.1926

Report No YCTP-N16-88 (Yale University, 1988) 55 p.

6. Gaardhoje J. J. Ann. Rev. Nucl. Part. Sci. 42 (1992) 483. https://doi.org/10.1146/annurev.ns.42.120192.002411

7. Broglia R. A., Bortignon P. F., Bracco A. Prog. Part. Nucl. Phys. 28 (1992) 517. https://doi.org/10.1016/0146-6410(92)90054-6

8. Pierroutsakou D., Auger F., Alamanos N. et al. Nucl. Phys. A 600 (1996) 131. https://doi.org/10.1016/0375-9474(95)00470-X

9. Mattiuzzi M., Bracco A., Camera F. et al. Nucl. Phys. A 612 (1997) 262. https://doi.org/10.1016/S0375-9474(97)80016-4

10. Brink D. M. Ph. D. Thesis (Oxford University, 1955) p. 101.

11. Axel P. Phys. Rev. 126 (1962) 671. https://doi.org/10.1103/PhysRev.126.671

12. Berman B. L., Fultz S. C. Rev. Mod. Phys. 47 (1975) 713. https://doi.org/10.1103/RevModPhys.47.713

13. Dietrich S. S., Berman B. L. Atom. Data and Nucl. Data Tabl. 38 (1988) 199. https://doi.org/10.1016/0092-640X(88)90033-2

14. Lone M. A. Neutron induced reactions: Proc. 4th. Intern. Symp., Smolenice, Czechoslovakia, June, 1985. Eds. J. Kristiak, E. Betak. D. Reidel Publ. Comp. (Dordrecht, Holland, 1986) p. 238. https://doi.org/10.1007/978-94-009-4636-1_26

15. Popov Yu. P. Neutron induced reactions: Proc. Europhys. Top. Conf., Smolenice, June 21 - 25, 1982. Physics and Applications. Vol. 10. Ed. P. Oblozinsky (Bratislava, 1982) p. 121.

16. Grudzevich O. T. Yadernaya Fizika 62 (1999) 227.

17. McCullagh C. M., Stelts M., Chrien R. E. Phys. Rev. C 23 (1981) 1394. https://doi.org/10.1103/PhysRevC.23.1394

18. Kahane S., Raman S., Slaughter G. G. Phys. Rev. C 30 (1984) 807. https://doi.org/10.1103/PhysRevC.30.807

19. Kopecky J., Chrien R. E. Nucl. Phys. A 468 (1987) 285. https://doi.org/10.1016/0375-9474(87)90518-5

20. Kopecky J., Uhl M. Phys. Rev. C 41 (1990) 1941. https://doi.org/10.1103/PhysRevC.41.1941

21. Coceva C. Nuovo Cimento A 107 (1994) 85. https://doi.org/10.1007/BF02813075

22. Kadmenskij S. G., Markushev V. P., Furman V. I. Yad. Fiz. 37 (1983) 277 [Sov. J. Nucl. Phys. 37 (1983) 165].

23. Sirotkin V. K. Yad. Fiz. 43 (1986) 570 [Sov. J. Nucl. Phys. 43 (1986) 362].

24. Kopecky J., Uhl M., Chrien R. E. Phys. Rev. C 47 (1993) 312. https://doi.org/10.1103/PhysRevC.47.312

25. Handbook for calculations of nuclear reaction data. Reference Input Parameter Library (RIPL). IAEA-TECDOC 1034, August 1998, Sci. d. P. Oblozinsky. Ch. 6. The directory GAMMA on the Web site: http://www-nds.iaea.or.at/ripl/

26. Sommermann H. M. Ann. Phys. 151 (1983) 163. https://doi.org/10.1016/0003-4916(83)90318-4

27. Ring P., Robledo L. M., Egido J. L. Nucl. Phys. A 419 (1984) 261. https://doi.org/10.1016/0375-9474(84)90393-2

28. Egido J. L., Weidenmuller H. A. Phys. Rev. C 39 (1989) 2398. https://doi.org/10.1103/PhysRevC.39.2398

29. Wambach J. Rep. Prog. Phys. 51 (1988) 989. https://doi.org/10.1088/0034-4885/51/7/002

30. Yannouleas C., Broglia R. A. Ann. Phys. 217 (1992) 105. https://doi.org/10.1016/0003-4916(92)90340-R

31. Bertsch G. F., Broglia R. A. Oscillations in Finite Quantum Systems (New York: Cambridge University Press, 1994).

32. Plujko V. A. Yad. Fiz. 52 (1990) 1004 [Sov. J. Nucl. Phys. 52 (1990) 639].

33. Bogolyubov N. N., Bogolyubov N. N., Jr. Introduction to Quantum Statistical Mechanics (World Scientific, 1984). [Russian ed. (Moskow: Nauka, 1984)].

34. Kubo R., Toda M., Hashitsume N. Statistical Physics II. Nonequilibrium Statistical Mechanics (New York: Springer-Verlag, 1985) Ch. 4, 5. https://doi.org/10.1007/978-3-642-96701-6

35. Gallardo M., Diebel M., Dossing T., Broglia R. A. Nucl. Phys. A 443 (1985) 415. https://doi.org/10.1016/0375-9474(85)90409-9

36. Ignatyuk A. V. Izv. Akad. Nauk SSSR. Ser. Fiz. [Bull. Acad. Sc. USSR, Phys. Ser. 36 (1972) 202].

37. Brink D. M. Nucl. Phys. A 482 (1988) 3. https://doi.org/10.1016/0375-9474(88)90571-4

38. Plujko V. A. Yad. Fiz. 50 (1989) 1284 [Sov. J. Nucl. Phys. 50 (1989) 800].

39. Eisenberg J. M., Greiner W. Nuclear Theory, Vol. 1, Nuclear Models, Collective and Single-Particle Phenomena (North-Holl., Amsterdam, 1987) Ch. 14, \S \S 3-5.

40. Yukawa T., Holzwarth G. Nucl. Phys. A 364 (1981) 29. https://doi.org/10.1016/0375-9474(81)90431-0

41. Nishizaki S., Ando K. Prog. Theor. Phys. 71 (1984) 1263. https://doi.org/10.1143/PTP.71.1263

42. Myers W. D., Swiatecki W. J., Kodama T. et al. Phys. Rev. C 15 (1977) 2032. https://doi.org/10.1103/PhysRevC.15.2032

43. Kolomietz V. M., Plujko V. A., Shlomo S. Phys. Rev. C 54 (1996) 3014. https://doi.org/10.1103/PhysRevC.54.3014

44. Plujko V. A. Acta Phys. Pol. B 30 (1999) 1383.

45. Kolomietz V. M., Plujko V. A., Shlomo S. Phys. Rev. C 52 (1995) 2480. https://doi.org/10.1103/PhysRevC.52.2480

46. Plujko V. A. Proc. Int. Conf. Nucl. Data Sci. Techn., Trieste, 19 - 24 May, 1997. Eds. Reffo G., Ventura, Grandi C. (Trieste, Italy) Vol. 59, Part 1, p. 705.

47. Landau L. D. Zh. Eksp. Teor. Fiz. 32 (1957) 59 [Sov. Phys. JETP. 5 (1957) 101].

48. Ayik S., Boiley D. Phys. Lett. B 276 (1992) 263; https://doi.org/10.1016/0370-2693(92)90315-U

Phys. Lett. B 284 (1992) 482E. https://doi.org/10.1016/0370-2693(92)90464-F

49. Ayik S., Yilmaz O., Gokalp A., Schuck P. Phys. Rev. C 58 (1988) 1594. https://doi.org/10.1103/PhysRevC.58.1594

50. Li G. Q., Machleidt R. Phys. Rev. C 48 (1993) 1702. https://doi.org/10.1103/PhysRevC.48.1702

51. Li G. Q., Machleidt R. Phys. Rev. C 49 (1994) 566. https://doi.org/10.1103/PhysRevC.49.566

52. Bertsch G. Z. Phys. A 289 (1978) 103. https://doi.org/10.1007/BF01408501

53. Griffin J. J., Dworzecka M. Phys. Lett. B 156 (1985) 139. https://doi.org/10.1016/0370-2693(85)91496-0

54. Bush B., Alhassid Y. Nucl. Phys. A 531 (1991) 27. https://doi.org/10.1016/0375-9474(91)90566-O

55. Dover C. B., Lemmer R. H., Hahne F. J. W. Ann. Phys. 70 (1972) 458. https://doi.org/10.1016/0003-4916(72)90275-8

56. Plujko V. A. Nucl. Phys. A 649 (1999) 209c. https://doi.org/10.1016/S0375-9474(99)00063-9

57. Plujko V. A. Testing and improvements of gamma-ray strength functions for nuclear model calculations of nuclear data. LANL e-print. http://xxx.lanl.gov/abs/nucl-th/9907111

58. Dilg W., Schantl W., Vonach H., Uhl M. Nucl. Phys. A 217 (1973) 269. https://doi.org/10.1016/0375-9474(73)90196-6

59. Kataria S. K., Ramamurthy V. S., Kapoor S. S. Phys. Rev. C 18 (1978) 549. https://doi.org/10.1103/PhysRevC.18.549

60. Von Egidy T., Schmidt H. H., Behkami A. N. Nucl. Phys. A 481 (1988) 189. https://doi.org/10.1016/0375-9474(88)90491-5

61. Hasse R. W., Myers W. D. Geometrical Relationships of Macroscopic Nuclear Physics (Berlin, Heidelberg, New York: Springer-Verlag, 1988). https://doi.org/10.1007/978-3-642-83017-4

62. Moller P., Nix J. R., Myers W. D., Swiatecki W. J. At. Nucl. Data Tables 59 (1995) 185. https://doi.org/10.1006/adnd.1995.1002